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The Gibbs free energy

Cloud formation

G = U - TS + pV

δG = -S δT + V δp 

dU = dQ + dW, Using 

δG = δU - TδS -SδT+ pδV+Vδp

Consider a water droplet immersed in water vapour, at partial pressure
e and temperature T (the remaining ‘dry air’ plays no role and can be
ignored).

2



Suppose that the liquid and vapour are not in equilibrium, 

so that                                     e  ≠ es(T)

Suppose that the Gibbs free energy per unit mass of the vapour is 

Gv (T, e) 

and that of the liquid is Gl (T, e)

Now let the partial pressure be varied slightly from

e    to     e + de, 

while the temperature is held constant

δGv=Vv  δe δGl =Vl δe
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δG = -S δT + V δp 



where Vv and Vl are the specific volumes of the vapour and liquid,
respectively.

Vv >> Vl

δ(Gv - Gl) = (Vv - Vl) δe ≈ Vv δe

The vapour satisfies the ideal gas law          Vv= RvT/e

δ(Gv- Gl) = Rv T δe/e =Rv T δ(ln e)

Integrating at fixed T gives

Gv (T ,e) - Gl (T ,e)= Rv T ln e + F(T)

where F(T) is a function of integration 4



However, at equilibrium, on the vapour pressure curve where 

e = es(T) Gv = Gl

(This result is used in the standard derivation of the Clausius–Clapeyron
equation.) Using this condition to fix F(T),

0= Rv T ln es + F (T)

Now suppose that at some initial time we have a 

mass of water vapour,         m
at                               partial pressure                   e
and                             temperature                        T

with no droplet present 
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The total Gibbs free energy at this time is

G0 = Gv (T, e) m0      *

A droplet then starts to condense, at fixed temperature and pressure;
suppose that at some later instant its radius is a,
so that its surface area is

A = 4 π a2

and its mass is                  ml = 4 π a3ρl / 3

(where ρl is the density of the liquid) and the mass of the surrounding
vapour is mv

6



The total Gibbs free energy of the system is now the sum of the
Gibbs free energies of the liquid and vapour, plus a contribution due
to surface tension:

G = Gv (T, e) mv+ Gl (T, e) ml + γ A     ** 

where γ is the surface tension (or the surface energy per unit area) 

By conservation of mass           mv= m0 - ml

using equations * and **,we get

G - G0= (Gl – Gv )ml + γ A
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using
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The variation with radius a of the total Gibbs free energy of the system 
therefore takes the form
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Figure plots this function for two values of the relative humidity e/es

(indicating subsaturated or exactly saturated conditions), then the
logarithm in equation is negative or zero, so that and the curve
of G(r) has no turning point other than a = 0. 0 

( )se e T

Several useful facts can be learned from this figure

Note first that, if 

If e > es(T) (indicating supersaturated
conditions), then the logarithm is

positive, ß>0, and there is a maximum
of G at a radius a given by
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e > es(T) 

e < es(T) 
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Subsaturated conditions (e < es)

e < es(T) 
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If droplet grows (a increases), then ΔG>0, this won’t happen spontaneously 

Formation of droplets is not favored

Random collisions of water molecules
do occur, forming very small
embryonic droplets (that evaporate)

These droplets never grow large
enough to become visible
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Supersaturated conditions (e > es)

e > es(T) 

If droplet grows (R increases), then ΔG can be positive or negative
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ΔG initially increases with increasing a

ΔG is a maximum where radius = a

ΔG decreases with increasing Radius 
beyond a
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Embryonic droplets with R < a tend to evaporate

Droplets which grow by chance (collisions) with R > a will continue to 
grow spontaneously by condensation

They will cause a decrease in the Gibbs free energy (total energy) 
of the system

Supersaturated conditions (e > es)



This is known as Kelvin’s formula; it may also be written in the form
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Kelvin’s formula
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Raoult’s law

The above theory must be modified significantly if solutes are present 
in the cloud droplet. 

Raoult’s law states that, over a droplet containing

N moles                solute 

N0 moles              pure water,

The vapour pressure must be modified by the factor 

if N << N0. Consider a spherical droplet of radius a and volume 
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containing

mass                  m           of solute of 

molar mass        M 

Where id is the number of ions produced by the dissociation of one 
solute molecule 

For example id = 2 for NaCl, 

Which dissociates completely into Na+ and Cl− ions
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Where    
ρl density of the pure water 

Mw molar mass of pure water

(This approximation ignores the small mass m of solute within the
droplet and the fact that the density of the solution is slightly
different from ρl.)

We therefore obtain
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We obtain the relative humidity RH, given by 

Fig. gives an example of this function of radius a: 
Köhler curve.

Kelvin Curve

Haze -->

Kelvin factor exp(A/a)

which decreases
with increasing a, 

Raoult factor

which increases 
with increasing a
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The relative humidity has a maximum at a=ac

In this example ac ≈ 0.2 μm, at which value RH=RHc ≈100.4% 

Consider such a droplet in air with an ambient relative humidity less
than this value of RHc, as given say by the thick dashed horizontal line

For this ambient RH there are two equilibrium values of a, on either
side of ac.

The smaller value (point A)
corresponds to stable equilibrium,
for if the RH over the drop falls
slightly below the ambient value,
corresponding to a slight decrease in
the drop’s radius, condensation will
occur and the radius will increase
again to the equilibrium value.
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Conversely, a slight increase in radius will cause some evaporation,
leading to a decrease in radius to the equilibrium value. A stable droplet
of this kind is called a haze droplet.

However, the other equilibrium point ,B, will correspond to instability:

→ Activated nucleus

for example, as light increase in radius will lead to condensation and
hence to a further in crease in radius.

The droplet is then said to be activated.
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The analysis given above considers only the water vapour in the 
immediate neighbourhood of the droplet. 

However, if the droplet is to grow, there must be a continual supply 
of water vapour to its surface. 

This can happen by diffusion if there is a vapour density gradient in
the region surrounding the droplet, with the vapour density increasing
with distance.

Fick’s law

A simple representation of this diffusion is in terms of Fick’s law

f =−D∇ρv

ρv vapour density,
f              vapour-flux vector 
D             diffusion coefficient, assume dconstant
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Assuming that at some instant the radius of the droplet is a and that
the distribution of the vapour density is spherically symmetric,

ρv = ρv(r), 

the total inward flux of mass of vapour through a sphere Sr of radius
r > a is

Where n is the outward normal to Sr



23

However, water vapour is lost only by condensation at r = a,

so for

r > a 

this flux must be independent of r and equal to the rate of increase
of mass of the droplet,

dMl / dt

Which can be integrated from r = a to r = ∞ to give 
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using the ideal gas law

ρv =e/(RvT)  
for the vapour,

e(∞) vapour pressure 

T(∞) temperature                 far from the droplet 

e(a) and   T(a)         at its surface
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