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Phase changes of water 
(latent heat transfer)



Equilibrium Curve
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Equilibrium: Rate of condensation = Rate of evaporation

es: water vapor pressure at equilibrium (saturation)



Clausius–Clapeyron equation

δV ≈Vv

Hence the Clausius–Clapeyron equation can be written in the more
convenient form
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= RvT/p = 1/ρv

It is responsible for the precipitation

Water vapour is a minor constituent of the atmosphere

Volume mixing ratio (≤ 0.03)
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where T0 is a constant reference temperature.

We can relate the partial pressure e of water vapour to its volume
mixing ratio ν and mass mixing ratio µ, say:
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ν =e/p                   µ = ε(e/p)

is the mean molecular mass for the sample. 
We also define the volume mixing ratio νi

(also known as the mole fraction)by
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Note that if L is constant (a fairly good approximation at typical
atmospheric temperatures), this can be integrated to give
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where p is the total air pressure, and
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So long as no condensation or evaporation takes place, this mass µ 
remains constant. 

The vapour pressure of the parcel satisfies
p

e

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and while this remains less than es(T) saturation does not occur, since
the water vapour in the parcel remains below the vapour pressure
curve in Figure.



Suppose that the parcel rises adiabatically from the surface at p0 and T0

then the potential temperature of the parcel remains constant at θ = T0

while the temperature T of the parcel falls according to

we can eliminate the pressure p of the parcel to find how the vapour
pressure varies as a function of temperature T, following the motion
of the parcel:
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As illustrated in Figure , eventually the temperature of the rising parcel 
falls enough for eparcel = es and saturation occurs. 

It is called the lifting condensation level.
(However, it should be noted that in
practice liquid need not form at saturation;
the vapour may become supersaturated.

It is usually necessary for small
‘condensation nuclei’ to be present before
liquid drops appear; see next Section.)
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A useful related concept is the
saturation mixing ratio, defined as:
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The pressure level at which this happens can be calculated from equation: 
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If, at temperature T and pressure p, the mixing ratio

µ < µs (T, p) e < es Air is unsaturated
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Air is saturatedµ = µs (T, p), e = es

Air is supersaturatedµ > µs (T, p), e > es



Contours of the saturation mixing ratio µs(T, p), in units of gkg-1

Fig. gives a plot of µs as a function of temperature and pressure. 

The overall behaviour of µs is clearly consistent with the facts that
it is inversely proportional to pressure and proportional to es , which
increases with temperature (see prvious Fig.).
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The dew point Td of a sample of air is the temperature to which the air
must be cooled at constant pressure (i.e. not following a rising parcel),
retaining its water vapour content, for it to become saturated.

We now briefly mention the ice phase. 

In addition to the vapour–water phase transition just considered,
there are also ice–water and ice–vapour transitions, as shown in Fig.
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Therefore, if the water vapour mixing ratio is µ, the dew pointTd satisfies 
the implicit equation

s d(T , p ) 

Equivalently, if the air sample initially has vapour pressure e, then

s de ( T ) e



The phase transitions between ice, liquid water and water vapour.
The triple point is indicated by the small solid circle.

Note that the ice–water curve is not quite vertical, but has a large
negative slope of about -1.4 × 105 hPa K-1 near the triple point.

The three transition lines meet at the triple point,

Tt = 273 K       and        pt = 6.1 hPa. 
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the specific volume of water vapour is     Vv ≈ 2 × 105 Vl

The densities and, therefore, the specific volumes V of the three
phases are different at the triple point:

the specific volume of liquid water is        Vl = 1.00 ×10-3m3kg-1

the specific volume of ice is                      Vi= 1.09Vl

(unlike most substances, water expands on freezing)
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The basic form 

of the Clausius–Clapeyron equation applies to each of these transitions

Since                 Vv >>Vi

and the latent heat of sublimation (ice–vapour) is approximately constant, 
an approximate form of the sublimation curve can be found as in equation

indeed, since the two latent heats are fairly similar in size, the two 
curves are quite close.
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However, the form of the ice–water transition curve is very different:
here δV is small and negative, since Vl is slightly less than Vi , but the
latent heat of fusion is positive and non-negligible.

Hence the ice–water transition has a large negative slope, as indicated 
in Fig.
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The saturated adiabatic lapse rate
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While the air in a rising parcel remains unsaturated, the derivation of 
the adiabatic lapse rate

remains unchanged, apart from the use of the specific heat capacity cp

for the mixture of dry air and water vapour: this is always close to that
for dry air alone (see Problem 2.6).

However, once saturation takes place, the calculation of the lapse rate
following the parcel must be changed significantly, because of the latent
heat released.

So the dry adiabatic vertical temperature gradient is about -9.8 K/km  
The dry adiabatic lapse rate (defined as –dT/dz) is about +9.8 K/km
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considering a saturated parcel (which is taken for convenience to be of
unit mass) that rises a distance dz.

At saturation, the mixing ratio equals the saturation mixing ratio

s(T , p ) 

If a mass of water then                         condenses during the rise 
through height δz, an amount of latent heat is given to the parcel.  

s sδμ = -δμ

s sδQ=L δμ = -Lδμ

Note that δµs, as is usual for a small change, is defined as an increase in 
µs ; therefore -δµ is a decrease of µs.
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The liquid water is assumed to fall out of the parcel and take no further
part in its heat balance: this is an irreversible process and it also implies
a loss of heat from the parcel.

Hence the parcel undergoes a non-adiabatic (and indeed a non
adiathermal) change.

However, the amount of heat removed from the parcel by the liquid
water is small compared with that remaining in the parcel, so the process
is referred to as pseudo-adiabatic.
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The latent heat release δQ, given by previous equation, is equal to the heat
input into the parcel while it rises a distance δz and its temperature
increases by δT.

We assume that this heat input occurs reversibly so

where cp is the value for the dry air–water vapour mixture.

We now need to express δμ in terms of δT and δz.

Taking logarithms and differentiating gives

However, es depends only on T,so
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moreover, from the Clausius–Clapeyron equation
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From the hydrostatic equation in the form

where p is the total pressure; by collecting these results we therefore get

By eliminating δμs from this equations (2.46) and

we obtain
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Letting δz → 0, we get the saturated adiabatic lapse rate (SALR) Гs:

Note that the factor g/cp on the right-hand side of equation  equals 
the DALR Гa .

For typical atmospheric values of T and μs it is found that Гs ≤ Гa.

Because of the latent heat given to the air by condensation of the
water vapour, the temperature drops off less rapidly with height (by
about 6–9Kkm-1 ) at the SALR than it does at the DALR (∼ 9.8Kkm−1

Note that Гs depends on the temperature and pressure, through its 
dependences on T and μs (T, p). 
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Working in terms of the pressure of the parcel, rather than its height, 
we may show (again using

that, following the ascending parcel,

Given the expression for Г’s and suitable starting values of T and p, 
they may readily be calculated numerically.

say. Curves in the T, p plane whose slopes at each point are given by 
this equation are called saturated adiabatics. 
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In particular, it follows that, if the actual lapse rate Г is less than the 
SALR Гs, then the region is statically stable even if the air is saturated. 
However, if Г>Гs, a saturated parcel will be unstable. 

Moreover, if Гs <Г<Гa, a saturated parcel is unstable but an unsaturated 
one is not: this situation is called conditional instability.

See Figure for a graphical representation of the various cases considered 
here: this should be contrasted with the much simpler Figure 2.4 for a 
dry atmosphere.
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