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Parcel concepts

For an adiabatically rising parcel, the potential temperature and entropy 
are constant as its height changes, so we can write

From equation

we therefore have the following relation between the vertical derivatives
of temperature and pressure, following the parcel:



pVm = RT, dp
g

dz
 

The quantity  Гa is the rate of decrease of temperature with height, 
following the adiabatic parcel as it rises.

It is called the adiabatic lapse rate; 
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when applied to a mass of dry air, it is called the dry adiabatic lapse
rate (DALR) and is approximately 9.8Kkm−1

An alternative derivation of the expression 

for the DALR is to note that, for unit mass undergoing a reversible 
change,

For adiabatic motion of the parcel δQ = 0 and so, letting δz → 0,
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The actual lapse rate −dT/dz in the atmosphere will generally differ 
from the DALR.

To investigate the implications of this, consider a parcel that is
originally at equilibrium at height z, with temperature T, pressure p
and density ρ, all equal to the values for the surroundings.

Now suppose that an instantaneous upward force is applied to the
parcel, so that it rises adiabatically through a small height δz, without
influencing its surroundings;



At the displaced position z1= z + dz the parcel temperature has increased 
to Tp1, say, according to the adiabatic lapse rate: 

On the other hand, the environment temperature 
at height z1 is

If  Γ ≠ Γa there is therefore a temperature difference between the 
displaced parcel and its surroundings.

However, since the pressures are the same inside and outside the 
parcel at height z1, these pressures are both equal to
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By the ideal gas law, equation 

the densities inside and outside the parcel are

P = RaT ρ

The volume of the parcel at height z1 equals the volume of air displaced 
there;

if                                   ρp1 > ρe1

the mass of the parcel at z1 is greater than the mass of air displaced,
so the parcel is ‘heavier’ than its surroundings. 



This holds provided that the temperature of the parcel is less than 

that of its surroundings           (Tp1 < Te1)

If Γ < Γa from equations , i.e. provided that the environment
temperature falls less rapidly with height than the adiabatic lapse rate;

In this case the displaced parcel, being denser than its surroundings,
will tend to fall back towards its equilibrium level; we say that
the atmosphere is statically stable (or ‘stable’, for short) near height z.8



if   Γ > Γa 

so that the environment temperature falls more rapidly with height
than the adiabatic lapse rate, a parcel displaced adiabatically upwards
finds itself ‘lighter’ than its surroundings and hence continues to rise:
the atmosphere is then said to be statically unstable (or ‘unstable’)
near z
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Since the parcel temperature is the same as the environment the parcel will neither continue to 

move away from nor return to it’s original level.

we have neutral stability.

if   Γ = Γa 
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As a further step, we can investigate the buoyancy force on the parcel 
and its acceleration.

The upward buoyancy force on the parcel is g times the difference 
between the mass of air displaced and the mass of the parcel, i.e.

at height z1 ,where V1 is the volume of the parcel there. 
By Newton’s second law, this force can be equated to the mass of the 
parcel times its acceleration, i.e.
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We therefore have

to leading order in the small quantity dz. 

(The ideal gas law                                          has been used to go from 
the second to the third expression here.)

We therefore have an equation of the form



and the temperature T in this equation  is that of the environment.

In the case of a statically stable region of the atmosphere, in which 

Γa > Γ , equation indicates that N 2 > 0 and equation 

represents simple harmonic motion, with sinusoidal solutions. 

The parcel then oscillates up and down at an angular frequency N, where 
N is called the buoyancy frequency or the Brunt–Väisälä frequency;

for the lower atmosphere the corresponding period 2π/N is a few 
minutes (see Problem 2.7).
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For a statically unstable region of the atmosphere, in which  Γa > Γ , N2 < 0
So that N is imaginary, which leads to exponential solutions of equation 
(2.30), 

one of which corresponds to the displaced parcel continuing to move at an 
increasing speed.

The quantity N 2 is a useful measure of atmospheric stratification. 

and differentiating, we obtain

It can be related to the potential temperature of the environment as follows. 

Taking logarithms of equation 
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On combining equations 

and  above equ. we obtain the equation

using the ideal gas law  

and the relation

Thus a region of the atmosphere is statically stable if θ increases with 
height and is statically unstable if θ decreases with height. 16



The available potential energy

This holds in all reasonable cases; for example, p decays exponentially with 
z in an isothermal atmosphere, as shown in equation 
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p=p0 z=z0

p=0 z=∞



The boundary term E0 = 0 if the surface elevation z0 = 0, but in general
we must allow for topography of varying height over the Earth’s

surface, with z0 ≠ 0

We now consider the internal energy of the air in the column.
As noted in equation  U=cvT the internal energy per unit mass is cvT, 

so the integral of this over the mass of the column is

We define the total potential energy ET of the column as the sum of 
the potential and internal energies
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since           cv + Ra = cp = Ra/κ

since the enthalpy per unit mass is              cpT

H = cvT + RaT = cpT

so that the enthalpy per unit volume is

cpρT = cp p / Ra
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We can extend these ideas to the atmosphere as a whole by integrating 
the column values over the Earth’s surface area; for example, the global 
total energy is

where z1(x, y) is the height of the 
isentrope. 

where p1(x, y) is the pressure on the isentrope.
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where x and y are horizontal coordinates.



In particular the total mass of the atmosphere is
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The same results must hold for the reference state so that, under an 
adiabatic redistribution of mass, the global integral p1 (or global mean) 
of the pressure on the θ1 isentrope (and therefore on every isentrope) 
must remain unchanged.

Together with other arguments, this allows the reference state and 
also the difference in total potential energy between the actual and 
reference states to be calculated. 
This difference is called the available potential energy and represents 
the maximum amount of potential energy that might be released for 
conversion into, say, kinetic energy. 

The details of the calculation are generally quite complicated; however, 
a simple special case is considered in Problem 2.9.



Moisture in the atmosphere

Clausius–Clapeyron equation

L=TδS

dV ≈Vv= 1/ρv= RvT/p, 

Hence the Clausius–Clapeyron equation can be written in the more
convenient form
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Note that if L is constant (a fairly good approximation at typical 
atmospheric temperatures), this can be integrated to give

where T0 is a constant reference temperature.

We can relate the partial pressure e of water vapour to its volume 
mixing ratio ν and mass mixing ratio µ,say,using equations :
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ν =e/p                   µ = ε(e/p)

where p is the total air pressure, as usual, and

Another important measure of the moisture content of air is the relative 
humidity,  defined by
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Now consider a parcel of moist air, of unit mass, containing mass µ of
water vapour, so that µ is the mass mixing ratio of water vapour
according to our definition

So long as no condensation or evaporation takes place, this mass µ 
remains constant. 

The vapour pressure of the parcel satisfies

and while this remains less than es(T) saturation does not occur, since 
the water vapour in the parcel remains below the vapour pressure 
curve in previuse Figure.

ν =e/p                   µ = ε(e/p)by equation 
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Suppose that the parcel rises adiabatically from the surface 

(at      pressure p0 and        temperatureT0)

then the potential temperature of the parcel remains constant at θ = T0

while the temperature T of the parcel falls according to

by equation 

we can eliminate the pressure p of the parcel to find how the vapour
pressure varies as a function of temperature T, following the motion of 
the parcel:
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As illustrated in Figure , eventually the temperature of the rising parcel 
falls enough for eparcel = es and saturation occurs. 

The pressure level at which this happens can be calculated from equation: 

it is called the lifting condensation 
level. (However, it should be noted that 
in practice liquid need not form at 
saturation; the vapour may become 
supersaturated. It is usually necessary 
for small ‘condensation nuclei’ to be 
present before liquid drops appear; see 
next Section.)
A useful related concept is the 
saturation mixing ratio, defined as

(g kg-1) 
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If, at temperature T and pressure p, the mixing ratio

µ < µs (T, p),  e < es

from







Air is unsaturated

Air is saturatedµ = µs (T, p), 

Air is supersaturatedµ > µs (T, p), 
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Contours of the saturation mixing ratio µs(T, p), in units of gkg-1

Fig. gives a plot of µs as a function of temperature and pressure. 

The overall behaviour of µs is clearly consistent with the facts that 
it is inversely proportional to pressure and proportional to es , which 
increases with temperature (see prviouse Fig.).
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The dew point Td of a sample of air is the temperature to which the air
must be cooled at constant pressure (i.e. not following a rising parcel),
retaining its water vapour content, for it to become saturated.

Therefore, if the water vapour mixing ratio is µ, the dew pointTd

satisfies the implicit equation

Equivalently, if the air sample initially has vapour pressure e, then

es(Td) = e.

We now briefly mention the ice phase. 

In addition to the vapour–water phase transition just considered,
there are also ice–water and ice–vapour transitions, as shown in Fig.
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The phase transitions between ice, liquid water and water vapour.
The triple point is indicated by the small solid circle. Note that the
ice–water curve is not quite vertical, but has a large negative slope of
about -1.4 × 105 hPa K-1 near the triple point.

The three transition lines meet at the triple point,

Tt = 273 K       and        pt = 6.1 hPa. 
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the specific volume of water vapour is     Vv ≈ 2 × 105 Vl

The densities and, therefore, the specific volumes V of the three
phases are different at the triple point: 

the specific volume of liquid water is        Vl = 1.00 ×10-3m3kg-1

the specific volume of ice is                      Vi= 1.09Vl

(unlike most substances, waterexpands on freezing)
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The basic form 

of the Clausius–Clapeyron equation applies to each of these transitions

Since                 Vv >>Vi

and the latent heat of sublimation (ice–vapour) is approximately constant, 
an approximate form of the sublimation curve can be found as in equ.

indeed, since the two latent heats are fairly similar in size, the two 
curves are quite close.
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However, the form of the ice–water transition curve is very different:
here δV is sma and negative, since Vl is slightly less than Vi , but the
latent heat of fusion is positive and non-negligible.

Hence the ice–water transition has a large negative slope, as indicated 
in Fig.

34



Many of the concepts developed above for condensation of water
vapour at the vapour–liquid transition can be applied also to sublimation
at the vapour – ice transition.

These include

the saturation vapour pressure,

saturation mixing ratio

the frost point

the temperature to which moist air must be cooled at constant
pressure for sublimation to occur.
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The saturated adiabatic lapse rate
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