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Atmospheric Thermodynamics

In this chapter we show how basic thermodynamic concepts can be 
applied to the atmosphere.

1) The atmosphere behaves as an ideal gas

2) Some basic information on the various gases comprising the atmosphere 

3) The potential temperature 

4) An air parcel concept 

5) The thermodynamics of water vapour in the air

6) The tephigram

7) The formation of cloud droplets by condensation of water vapour
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The ideal gas law

To a good approximation the atmosphere behaves as an ideal (or perfect) 
gas, with each mole of gas obeying the law

pVm = RT, m
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Atmospheric composition

Consider a small sample of air 
volume V,

temperature T  
pressure p, Gi (i = 1,2,...) 
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If there are ni molecules of gas Gi in the sample, then the total number 
of molecules in the sample is

in n

i im m n the total mass of the sample 

We define the mass mixing ratio μi of gas Gi
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We now introduce the ideal gas law in the form pV = nk
B
T

for one mole, n = NA , where NA is Avogadro’s number, 

A BR N k
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The partial pressure pi of gas Gi is the pressure that would be
exerted by the molecules of Gi from the sample if they alone
were to occupy volume V at temperature T
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Dalton’s laws of partial pressures, ip p
Dalton’s laws of partial volumes, 

iV V
we can relate the mass mixing ratio to the partial pressure as follows:
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We also define the volume mixing ratio
i
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Note that the two mixing ratios are related by

pV = nk
B
T, 
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Another measure of the concentration of an atmospheric gas is the
number density (the number of molecules of the gas per unit volume),

in

V
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Similarly, the mean molar mass i iM M v



8

Using Table it can be verified that the mean molar mass of dry air 
is about 28.97.
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Hydrostatic balance

This is subject to a gravitational force 
g Δm downwards,

For an atmosphere at rest, in static equilibrium, the net forces acting 
on any small portion of air must balance.

Consider for example a small cylinder of air, of
height Δz and horizontal cross-sectional area ΔA,

its mass       Δm =ρ ΔA Δz 

g is the gravitational acceleration

This force must be balanced by the difference between the upward
pressure force p(z)ΔA on the bottom of the cylinder and the downward
pressure force p(z +Δz)ΔA on the top. 
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We therefore have

by cancelling ΔA and using the Taylor expansion

we get the equation for hydrostatic balance,

We can derive some basic properties of the atmosphere, given that 
it is an ideal gas and assuming that it is in hydrostatic balance. 

ap R T   
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If the temperature is a known function of height, T(z), we can in 
principle find the pressure and density as functions of height 

The simplest case is that of an isothermal temperature profile, i.e. T = T0

= constant, when the pressure decays exponentially with height:
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the pressure scale height

The height over which the pressure falls by a factor of 1/e=0.368

In this isothermal case the density also falls exponentially with 
height in  the same way: 

Ρ0  being the density at the ground. 

ρ = ρ
0
exp(-z/H) 

H = RaT0 /g 

For an isothermal atmosphere with T0= 260 K, H is about 7.6 km
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The lapse rate  denotes the rate of decrease of temperature with 
height:

in general the temperature decreases with height (Γ > 0) in the

troposphere and increases with height (Γ < 0) in the stratosphere;

A layer in which the temperature increases with height (Γ < 0) is
called an inversion layer.

If Γ is constant in the region between the ground and some height z1

,say, then the temperature in that region decreases linearly with height
and the integral in
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Another useful deduction from the hydrostatic equation in the form 

is the ‘thickness’, or depth, of the layer between two given surfaces 
of constant pressure. 

Suppose that the height of the pressure surface p = p1 is z1

and the height of the pressure surface p = p2 is z2

Then, if p1> p2 ,we must have z1< z2

since pressure decreases with height when hydrostatic balance applies

From integration gives
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The integral can in principle be evaluated if the temperature T is
known as a function of pressure p: this may be provided for example
by a weather balloon or a satellite-borne instrument.

In particular, if T is constant,

If T is not constant, we can still write
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Thus the thickness of the layer between two pressure surfaces is 
proportional to the mean temperature of that layer.

provided that we define T as a suitably weighted mean temperature 
within the layer:
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Entropy and potential temperature

The First Law of Thermodynamics, applied to a small change to a
closed system, such as a mass of air contained in a cylinder with a
movable piston at one end can be written

where S is the entropy of the system 

An alternative form 

H = U + pV the enthalpy
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These equations apply both for reversible and for irreversible changes. 
However, we shall mostly restrict our attention to reversible changes, 
for which the equations

For unit mass of ideal gas, for which V = 1/ρ, it can be shown that

where cv is the specific heat capacity at constant volume and is
independent of T.

Therefore the ideal gas law, equation  
implies that, for unit mass of air

ap R T

the specific heat capacity 
of air at constant pressure
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On substituting the expression 

and V = 1/ρ = RaT/p into equation 

we get

Division by T gives

and integration gives the entropy per unit mass

which is approximately 2/7 for a diatomic gas, and S0 is a constan
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An adiathermal process is one in which heat is neither gained nor lost, 
so that δQ = 0

An adiabatic process is one that is both adiathermal and reversible;  

from equation δS = 0

Imagine a cylinder of air, originally at temperature T and pressure p, 
that is compressed adiabatically until its pressure equals p0. 

We can find its resulting temperature, θ say, using equation 

with the fact that δS = 0,
For an adiabatic process, so that
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Integrating and using the end conditions T = θ and p = p0 then gives

The quantity θ is called the potential temperature of a mass of air at
temperature T and pressure p.
The value of p0 is usually taken to be 1000 hPa.

Using equation 

it follows that the potential temperature is related to the specific entropy S by

where S1 is another constant 
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By definition, the potential temperature of a mass of air is constant 
when the mass is subject to an adiabatic change; 

conversely, the potential temperature will change when the mass is 
subject to a non-adiabatic (or diabatic) change.

As we shall see, the potential temperature is often a very useful 
concept in atmospheric thermodynamics and dynamics.


