Atmospheric Pollution

Lecture 5

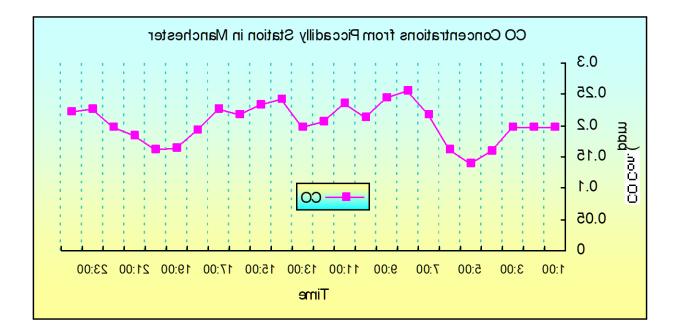
Sahraei Physics Department <mark>Razi university</mark>

http://www.razi.ac.ir/sahraei

Carbon Monoxide

Carbon Monoxide

Carbon monoxide [CO(g)] is a tasteless, colorless, and odorless gas. Although CO(g) is the most abundantly emitted variable gas aside from CO2(g) and HO(g), it plays a small role in ozone formation in urban areas.


Table 3.8. Sources and Sinks of Atmospheric Carbon Monoxide			
Sources	Sinks		
Fossil-fuel combustion Biomass burning Photolysis and kinetic reaction Plants and biological activity in oceans	Kinetic reaction to carbon dioxide Transfer to soils and ice caps Dissolution in ocean water		

Substance	Chemical Formula or Acronym	Total Emissions (10 ⁶ short tons per year)	Industrial Processes (area sources; percentage of total)	Fuel Combustion (point sources; percentage of total)	Transportation (mobile sources; percentage of total)	Miscellaneous (percentage of total)
Carbon monoxide	CO(g)	90	6.9	5.5	76.6	11.0
Nitrogen	NO _× (g)	24	3.9	45.4	49.2	1.5
Sulfur dioxide	SO ₂ (g)	20	8.4	84.7	6.6	0.3
Particulate matter	PM ₁₀ (aq,s)	37	3.9	3.2	2.2	90.7
≤10 µm ^a Lead Reactive organic gases	Pb(s) ROGs	0.004 20	74.1 51.2	12.6 4.5	13.3 39.9	0 4.4

Table 3.9. Estimated Total Emissions and Percentage of Total Emissions by Source Category in the United States in 1997

^aPM₁₀ is particulate matter with diameter \leq 10 μ m. Miscellaneous PM₁₀ sources include fugitive dust (57.9 percent of total PM₁₀ emissions), agricultural and forest emissions (14.0 percent), wind erosion (15.8 percent), and other combustion sources (3.0 percent).

Source: U.S. EPA (1997).

Methane

Table 3.10. Sources and Sinks of Atmospheric Methane				
Sources	Sinks			
Methanogenic bacteria (lithotrophic autotrophs) Natural gas leaks during fossil-fuel mining and transport Biomass burning Fossil-fuel combustion Kinetic reaction	Kinetic reaction Transfer to soils and ice caps Methanotrophic bacteria (conventional heterotrophs)			

Ozone (O₃(g))

Smell > 20 ppbv; clear at low and faint purple at high mixing ratio Source

Atmospheric chemical reaction

Sinks

Atmospheric chemical reaction and photolysis Dissolution into oceans, lakes; transfer to ice caps, soil

Mixing ratios 20-40 ppbv clean air; 40-500 ppbv pollution; 10 ppmv strat. Health effects >150 ppbv --> headache >250 ppbv --> chest pain, sore throat, cough, short breath

Affects vegetation, rubber, textile, dyes, fibers

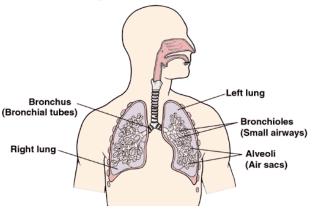
Nitrogen Oxides (Nox)

 $NO_{x}(g) = NO(g) + NO_{2}(g)$

Major Atmospheric Pollutants

4 - Oxides of Nitrogen

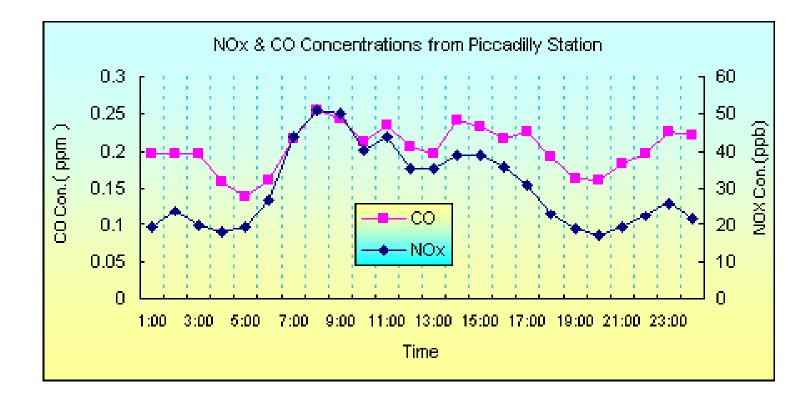
Combustion of fossil fuels containing nitrogen results in oxidation of nitrogen, producing a family of nitrogen oxides, No_x .


Nitrogen Dioxide

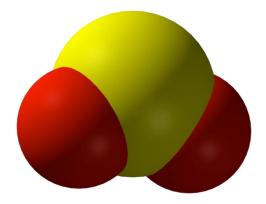
>80 ppbv: sore throat
150-250 ppbv typical for polluted air
300-800 ppbv reduced lung capacity
> 150 ppmv death

Table 3.13. Sources and Sinks of Atmospheric Nitric Oxide			
Sources	Sinks		
Denitrification in soils and plants Lightning Fossil-fuel combustion Biomass burning Photolysis and kinetic reaction	Kinetic reaction Dissolution in ocean water Transfer to soils and ice caps		

Narrowing of Bronchioles in Asthma


Other effects are: shortness of breath, tiredness, and nausea

Nitrogen oxides cause direct damage to plants and animals.


In plants, nitrogen oxides cause :loss of leaves and even reduce a plant's growth rate.

These chemicals can even reduce the growth rate in animals

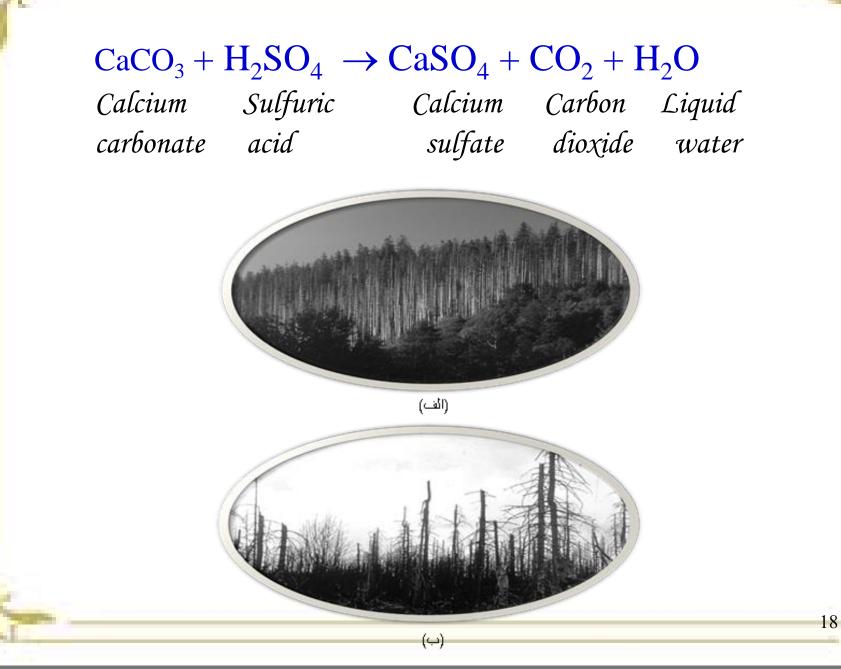
Hourly averaged NOx and CO concentrations from Manchester City Centre.

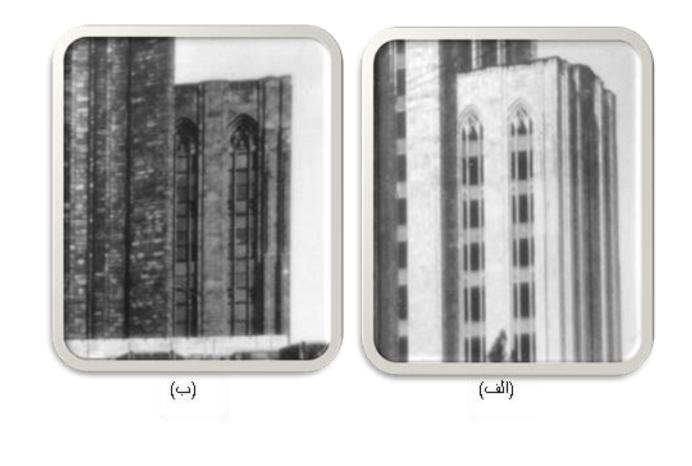
Sulfur Dioxide (SO₂(g))

1-30 ppbv: typical for polluted air
>300 ppbv: taste
>500 ppbv: odor
>1500 ppbv: bronchial restrictions
> 40,000 ppbv: death

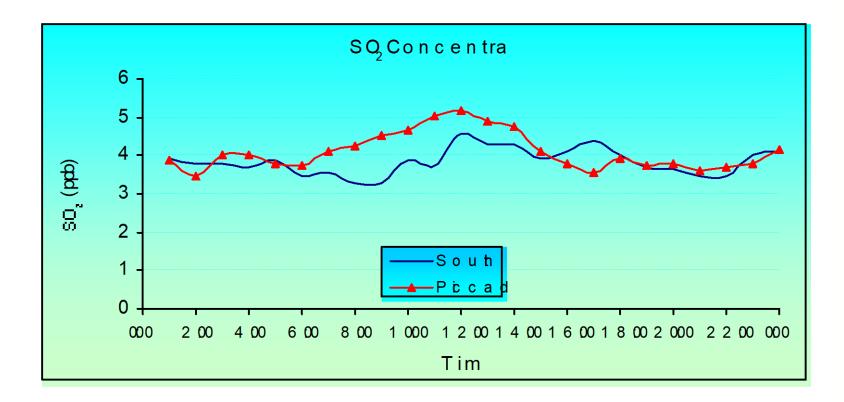
Sulphur Trioxide as Secondary pollutant $SO_2 + OH \implies HOSO_2$ $HOSO_2 + O_2 \longrightarrow SO_3 + HO_2$ $SO_3 + H_2O \rightarrow H_2SO_4$

Table 3.12. Sources and Sinks of Atmospheric Sulfur Dioxide			
Sources	Sinks		
Oxidation of DMS(g) Volcanic emission Fossil-fuel combustion Mineral ore processing Chemical manufacturing	Kinetic reaction to H ₂ SO ₄ (g) Dissolution in cloud drops and ocean water Transfer to soils and ice caps		


Table 3.9. Estimated Total Emissions and Percentage of Total Emissions by Source Category in the United States in 1997						
Substance	Chemical Formula or Acronym	Total Emissions (10° short tons per year)	Industrial Processes (area sources; percentage of total)	Fuel Combustion (point sources; percentage of total)	Transportation (mobile sources; percentage of total)	Miscellaneous (percentage of total)
Carbon monoxide	CO(g)	90	6.9	5.5	76.6	11.0
Nitrogen oxides	NO _× (g)	24	3.9	45.4	49.2	1.5
Sulfur dioxide	SO ₂ (g)	20	8.4	84.7	6.6	0.3
Particulate matter ≤10 μmª	PM ₁₀ (aq,s)	37	3.9	3.2	2.2	90.7
Lead Reactive organic gases	Pb(s) ROGs	0.004 20	74.1 51.2	12.6 4.5	13.3 39.9	0 4.4


^aPM₁₀ is particulate matter with diameter $\leq 10 \ \mu$ m. Miscellaneous PM₁₀ sources include fugitive dust (57.9 percent of total PM₁₀ emissions), agricultural and forest emissions (14.0 percent), wind erosion (15.8 percent), and other combustion sources (3.0 percent).

Air Pollution in Lungs



http://www.sciencephoto.com/image/88071/530wm/C0023802-Lung,_post-mortem-SPL.jpg_

Hourly average SO_2 concentration from two monitoring stations

