Atmospheric Physics Lecture 3 J. Sahraei **Physics Department**, Razi University **http://www.razi.ac.ir/sahraei**

The Planck function

Black-body radiation

Planck's law states that the spectral energy density of black-body radiation at absolute temperature T is given by

Since the photons carrying this energy are moving isotropically, the energy density associated with the group of photons moving within a small solid angle $\Delta \Omega$

 $u_{\nu}\Delta\Omega/(4\pi)$

The power per unit area, per unit solid angle, per unit frequency interval (the spectral radiance) for black-body radiation at temperature T is

$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}(e^{h\nu/k_{B}T} - 1)}$

The Planck function

The black-body spectral radiance can also be written in terms of the power per unit area, per unit solid angle, per unit wavelength interval,

If B_{λ} is integrated over all wavelengths, we obtain the black-body radiance

$$\int_{0}^{\infty} B_{\lambda}(T) d\lambda = \frac{\sigma}{\pi} T$$

where σ is the Stefan-Boltzmann constant

In terms of an integral over $\ln(\lambda)$, this gives

$$T^{-4} \int_{-\infty}^{\infty} \lambda B_{\lambda}(T) d(\ln \lambda) = \frac{\sigma}{\pi}$$

This suggests plotting $T^{-4}\lambda B_{\lambda}$ against $\ln \lambda$:

the area under the resulting curve is then independent of T.

Note that, with this normalisation, there is little overlap between the black-body spectral radiances at 6000

A black body is defined as a body that completely absorbs all radiation falling on it.

The concept of a black body is an idealisation

A real body will emit less radiation than this

The spectral emittance ε_v of a body is the ratio of the spectral radiance from that body to the spectral radiance from a black body;

therefore $\mathcal{E}_{\nu} \leq 1$

It follows that a black body emits the maximum possible amount of energy in each frequency interval, at a given temperarture

We can also define the spectral absorptance α_{ν}

as the fraction of energy per unit frequency interval falling on a body that is absorbed

Kirchhoff's law states that

 $\mathcal{E}_{\nu} = \alpha_{\nu}$

that is, at a given temperature and frequency the spectral emittance of a body equals its spectral absorptance Local thermodynamic equilibrium

 $B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}(e^{h\nu/k_{B}T} - 1)}$

The Planck function

 $h = 6.6262 \times 10^{-34} \text{ joule sec}$ $k = 1.3806 \times 10^{-23} \text{ joule deg}^{-1}$ $c = 2.99793 \times 10^{+8} \text{ m/s}$ T = object temperature in Kelvins

$$n_l = g_l e^{-E_l/k_B T}$$

$$\frac{n_1}{n_2} = \frac{g_1}{g_2} e^{-(E_1 - E_2)/(k_B T)}$$

The radiative-transfer equation

Radiometric quantities

Several different, but related, quantities are used in the description and measurement of radiation. The most important are as follows.

The spectral radiance (or monochromatic radiance) $L_v(r, s)$

is the power per unit area, per unit solid angle, per unit frequency interval in the neighbourhood of the frequency v, at a point r, in the direction of the unit vector s.

It is measured in W m⁻² stradian⁻¹ Hz⁻¹

The spectral radiance can be visualised in terms of the photons emerging from a small area ΔA with unit normal s, centred at a point r

$L_{\nu} \Delta A \Delta \Omega \Delta \nu$

Is energy transferred by these photons, per unit time, from 'below ' the area A to 'above'. (Here 'below' means in the direction -s and 'above' means in the direction s.)

We have already encountered a special case of the spectral radiance, for isotropic black body radiation in an isothermal cavity, when

$$L_{\nu} = B_{\nu}(T),$$

The radiance L(r,s) is the power per unit area, per unit solid angle at a point r in the direction of the unit vector s; in other words it is the integral of L_v over frequency

$$L(r,s) = \int_0^\infty L_v(r,s) dv$$

Its units are in W m⁻² stradian⁻¹

The spectral irradiance (or monochromatic irradiance) $F_v(r, n)$:

is the power per unit area, per unit frequency interval in the neighbourhood of the frequency v, at a point r through a surface of normal n;

$$F_{\nu}(\hat{r},\hat{n}) = \int_{2\pi} L_{\nu}(\hat{r},\hat{s}) \,\hat{n}.\hat{s} \, d\Omega(s)$$

its units are W m⁻² Hz⁻¹

The irradiance (or flux density) F(r, n) is the power per unit area at a point r through a surface of normal n, i.e. the integral of F_v over frequency, and also the integral of the radiance L over a hemisphere:

$$F(\hat{r},\hat{n}) = \int_{0}^{\infty} F_{\nu}(\hat{r},\hat{n}) d\nu = \int_{2\pi} L(\hat{r},\hat{s}) \hat{n}.\hat{s} d\Omega(s) \quad \text{its units are W m}^{-2}$$
$$F^{\downarrow} = F(\hat{r},-\hat{n}) \quad F_{z} = F^{\uparrow} - F^{\downarrow} \quad L_{\nu} = B_{\nu}(T)$$

Equation $F_{\nu}(\hat{r},\hat{n}) = \int_{2\pi} L_{\nu}(\hat{r},\hat{s}) \hat{n}.\hat{s} d\Omega(s)$

for the spectral irradiance becomes

$$F_{v}(\hat{r},\hat{n}) = \int_{2\pi} L_{v}\hat{n}\hat{s} \, d\Omega(s) = 2\pi B_{v} \int_{0}^{\pi/2} \cos\phi \sin\phi d\phi = \pi B_{v}(T)$$
$$d\Omega = 2\pi \sin\phi d\phi$$

since there is axisymmetry around the normal. Integrating over all v we obtain the Stefan-Boltzmann law for the irradiance

$$F(\hat{r},\hat{n}) = \pi \int_0^\infty B_{\nu}(T) d\nu = \sigma T^4$$

Blackbody radiation curves at three different temperatures (K; see legend in upper right corner).

Shortwave Radiation

$S_o = 1368 \text{ w m}^{-2}$ is the solar constant for Earth

Insolation

$$R_0 = S_0 \left(\frac{d_m}{d}\right)^2 \cos t$$
$$I_0 = \int_{t_1}^{t_2} R_0(t) dt$$

Radiation in the Atmosphere

Deviations from blackbody due to absorption by the solar atmosphere, absorption and scattering by the earth's atmosphere (below).

Stefan-Boltzmann Law

This law expresses the rate of radiation emission per unit area

$R = \sigma T^4$ $\sigma = 5.67 \times 10^{-8} W / m^2 K^4$

Compare the difference between the radiation emission from the sun and the Earth.

The sun with an average temperature of 6000 K emits 73,483,200 W/m^2

By contrast, Earth with an average temperature of 300 K emits 459 W/m^2

The sun has a temperature 20 times higher than Earth and thus emits about 160,000 times more radiation This makes sense, $20^4 = 160,000$