SPACE PTMSSICS

Lecture 10

J. Sahraei

Physics Department,
Razi University
http://www.razi.ac.ir/sahraei

The Sun and its Planets to Scale

Let's look at the density of the Planets

Planet Mercury	5.44
Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	
Varth	5.2
Mars	5.52
Jupiter	3.93
Saturn	1.3
Uranus	0.69
Neptune	1.28
Pluto	2.64
	2.06

Let's look at the density of the Planets

Let's look at the density of the Planets

Because their densities suggest that they are mostly made of rock and heavier materials

The Terrestrial (inner) Planets

- Small, dense and rocky
- Few moons, no rings

Mars

Similarities and Differences of the Terrestrial Worlds

From a distance, they appear very similar...

- rocky and small (we really can't see the surface of Venus directly)!

Examined close-up, They are very different...

- Mercury and Earth's Moon are airless and barren
- Mars has a very thin atmosphere
- Earth has oxygen, water, and life!
- Venus has a thick atmosphere and very hot!

Mercury and Earth's Moon

Similarities between Mercury and the Moon:

The similarities between these two worlds can be explained by their small sizes:

- Small size \Rightarrow low surface gravity \Rightarrow low escape velocity \Rightarrow gas cannot be trapped by gravity on the surface.
- No atmosphere \Rightarrow large day/nigh \dagger temperature difference
- Small size \Rightarrow small initial heat

Surface of Mercury looks very similar to the Moon content \Rightarrow they cool off fast \Rightarrow low level of geological activities

Internal Structure of the Terrestrial Planets

The internal structure of the terrestrial planets are similar. They all have

- Core - High density metal
- Mantle - Medium density rocky materials, such as silica $\left(\mathrm{SiO}_{2}\right)$, hot, semi-solid
- Crust - lowest density rocks, such as granite and basalt (black lava rock...)

The layering of different density materials occurs due to differentiation- heavy materials sink to the bottom while lighter material rise to the top...

Lithosphere: The coolest and most rigid layer of rock near a planet's surface. Molten lava of Earth exists at a very narrow region beneath the lithosphere

Heating of the Terrestrial Planets

The interiors of the terrestrial planets are heated by:

- Gravitational potential energy of the accreting planetesimals are converted into thermal energy.

Radioactive Heating
Radioactive materials (e.g., uranium, potassium, thorium) decay by emitting subatomic particles (alpha particlenuclei of helium, beta particleelectrons or positron, neutron, proton, etc.) and often gamma-ray, which collide with surrounding atoms, heating them up.

- Potassium-40 \rightarrow Argon-40
- Uranium-234 \rightarrow...... \rightarrow Lead-206

Internal heating causes Mantle Convection---hot rock rises to the top and cools off, cool rock sinks to the bottom, resulting in the cooling of the planet...

How Do We Know This?

The Crust:
A Thin Rock Material

The Mantle:
A Dense and Mostly Solid Rock Material

The Outer Core:
Liquid Iron and Nickel

The Inner Core:
Solid Iron and Nickel

The Density of Earth is 5.53

The Land is covered mostly by a type of rock called Granite (density of Granite $=2.7 \mathrm{gm} / \mathrm{cm}^{3}$)

The Ocean is mostly covered by a type of rock called Basalt (density of Granite $=3.3 \mathrm{gm} / \mathrm{cm}^{3}$)

Density of Rocks $\approx 3 \mathrm{gm} / \mathrm{cm}^{3}$

The Density of Earth is $5.53 \mathrm{gm} / \mathrm{cm}^{3}$

Density of Rocks $\approx 3 \mathrm{gm} / \mathrm{cm}^{3}$

Density of Iron/Nickel $\approx 8 \mathrm{gm} / \mathrm{cm}^{3}$
So we believe about $\frac{1}{2}$ the Earth is a Rock-like material and the other $\frac{1}{2}$ a heavy metal such as iron and nickel

The density of the Earth will be the average of the two:

$$
\frac{8+3}{2}=5.5
$$

Density of Mars is $3.9 \mathrm{gm} / \mathrm{cm}^{3}$

What does this tell us about the interior of Mars?

Mars has a much smaller Iron Core than Earth does

What does the density tell us about the interior of these bodies?
(do they have a very big core?)

Mercury density $=5.4 \mathrm{gm} / \mathrm{cm}^{3}$

Venus
density $=5.2 \mathrm{gm} / \mathrm{cm}^{3}$

Moon
density $=3.3 \mathrm{gm} / \mathrm{cm}^{3}$

The Atmosphere of the Terrestrial Worlds

According to the Nebular Theory, the terrestrial planets were formed by metallic and rocky planetesimals. So,

Where did the gas come from?

- The gases came from comets and asteroids impact during the period of heavy bombardment.
- The gases are trapped in the interior of the planets, later released through volcanic out-gassing.

But, why are their atmosphere so different?

Table 8.1 Atmospheres of the Terrestrial Worlds

World	Composition	Surface Pressure ${ }^{*}$	Winds, Weather Patterns	Clouds, Haze
Mercury	helium, sodium, oxygen	10^{-14} bar	None: too little atmosphere	None
Venus	$\begin{aligned} & 96 \% \mathrm{CO}_{2} \\ & 3.5 \% \mathrm{~N}_{2} \end{aligned}$	90 bars	Slow winds, no violent storms, acid rain	Sulfuric acid clouds
Earth	$\begin{aligned} & 77 \% \mathrm{~N}_{2} \\ & 21 \% \mathrm{O}_{2} \\ & 1 \% \text { argon } \\ & \mathrm{H}_{2} \mathrm{O} \text { (variable) } \end{aligned}$	1 bar	Winds, hurricanes	$\mathrm{H}_{2} \mathrm{O}$ clouds, pollution
Moon	helium, sodium, argon	10^{-14} bar	None: too little atmosphere	None
Mars	$\begin{aligned} & 95 \% \mathrm{CO}_{2} \\ & 2.7 \% \mathrm{~N}_{2} \\ & 1.6 \% \text { argon } \end{aligned}$	0.007 bar	Winds, dust storms	$\mathrm{H}_{2} \mathrm{O}$ and CO_{2} clouds, dust

[^0]
Let's look at the density of the Planets

$\left.\begin{array}{cc}\text { Planet } & \text { Density }\left(\mathrm{g} / \mathrm{cm}^{3}\right) \\ \text { Mercury } & 5.44 \\ \hline \text { Venus } & 5.2 \\ \hline \text { Earth } & 5.52 \\ \text { Mars } & 3.93 \\ \text { Jupiter } & 1.3 \\ \text { Saturn } & 0.69 \\ \text { Uranus } & 1.28 \\ \text { Neptune } & 1.64 \\ \text { Pluto } & 2.06\end{array}\right\}$ The next four planets

Let's look at the density of the Planets

Because their densities suggest that they are mostly made of gas

The Jovian (Outer) Planets

Large, gaseous, lots of moons, rings

Jupiter's Interior

The Density of Jupiter is $1.3 \mathrm{gm} / \mathrm{cm}^{3}$

What does this tell us about the interior of Jupiter?

Since the density of Jupiter is so small the planet has to be made mostly of very light material

Jupiter is made mostly of Hydrogen and Helium gas

The Density of Saturn is $0.69 \mathrm{gm} / \mathrm{cm}^{3}$

Saturn is also made up mostly of Hydrogen and Helium

The density of Saturn is less than $1 \mathrm{gm} / \mathrm{cm}^{3}$ so this planet can float in water

Structures of Uranus and Neptune

Relatively thin atmospheres compared to Jupiter and Saturn, but still quite extensive compared to terrestrial planets

Interiors of Uranus's Moons

Large rock cores surrounded by icy mantles.

What does the density tell us about the interior of Uranus and Neptune?

$$
\text { Uranus } \quad \text { density }=1.28 \mathrm{gm} / \mathrm{cm}^{3}
$$

Neptune density $=1.64 \mathrm{gm} / \mathrm{cm}^{3}$

Like Jupiter and Saturn these planets have low densities which suggest they are primarily made of gas.
(in this case methane)

Let's look at the density of the Planets

Planet	Density ($\mathrm{g} / \mathrm{cm}^{3}$)
Mercury	5.44
- Venus	5.2
Earth	5.52
Mars	/ 3.93
Jupiter	1.3
Saturn	0.69
Uranus	1.28
Neptune	1.64 And Pluto is Somewhere
Pluto	2.06 in between

Pluto

density $=2.06 \mathrm{gm} / \mathrm{cm}^{3}$

Since Pluto is so far away it is hard to see the planet. Since it is good at reflecting light scientists suspect \dagger there is ice at the surface, possibly frozen Nitrogen

Voyager Spacecraft

The Voyager Spacecraft on its way, looking back at Earth and our Moon

[^0]: * 1 bar \approx the pressure at sea level on Earth.

