

SPACE PHYSICS

Lecture 10

J. Sahraei

Physics Department,

Razi University

http://www.razi.ac.ir/sahraei

The Sun and its Planets to Scale

<u>Planet</u>	Density	(q/cm³)
	•	

Mercury 5.44

Venus 5.2

Earth 5.52

Mars 3.93

Jupiter 1.3

Saturn 0.69

Uranus 1.28

Neptune 1.64

Pluto 2.06

<u>Planet</u>	Density (g/cm³)
Mercury	5.44
Venus	5.2
Earth	5.52
Mars	3.93
Jupiter	1.3
Saturn	0.69
Uranus	1.28
Neptune	1.64
Pluto	2.06

The first four planets have higher densities

<u>Planet</u>	Density (g/cm³)	
Mercury	5.44	
Venus	5.2	These planets are known
Earth	5.52	as the Rocky Planets
Mars	3.93	
Jupiter	1.3	
Saturn	0.69	
Uranus	1.28	
Neptune	1.64	
Pluto	2.06	

Because their densities suggest that they are mostly made of rock and heavier materials

The Terrestrial (inner) Planets

- · Small, dense and rocky
- Few moons, no rings

Mercury

Venus

Earth

Mars

Similarities and Differences of the Terrestrial Worlds

From a distance, they appear very similar...

rocky and small (we really can't see the surface of Venus directly)!

Examined close-up, They are very different...

- Mercury and Earth's Moon are airless and barren
- Mars has a very thin atmosphere
- Earth has oxygen, water, and life!
- Venus has a thick atmosphere and very hot!

Mercury is heavily cratered, but also nas long, steep cliffs-one is visible nere as the long curve that passes through the center of the image.

The central structure is a tall twin-peaked volcano on Venus. Both images are based on radar data from the Magellan space craft, because Venus's thick clouds prevent us from seeing the surface in visible light.

Earth has a variety of geological features visible in this photo from orbit.

The Moon's surface is heavily cratered in most places.

Mars has impact craters like the one near the upper right, but it also has features that look much like dried up riverbeds

Mercury and Earth's Moon

Similarities between Mercury and the Moon:

The similarities between these two worlds can be explained by their small sizes:

- Small size ⇒ low surface gravity ⇒ low escape velocity ⇒ gas cannot be trapped by gravity on the surface.
- No atmosphere ⇒ large day/night temperature difference
- Small size ⇒ small initial heat content ⇒ they cool off fast ⇒ low level of geological activities

Surface of Mercury looks very similar to the Moon

Internal Structure of the Terrestrial Planets

The internal structure of the terrestrial planets are similar. They all have

- Core High density metal
- Mantle Medium density rocky materials, such as silica (SiO₂), hot, semi-solid
- Crust lowest density rocks, such as granite and basalt (black lava rock...)

The layering of different density materials occurs due to differentiation - heavy materials sink to the bottom while lighter material rise to the top...

Lithosphere: The coolest and most rigid layer of rock near a planet's surface.

Molten lava of Earth exists at a very narrow region beneath the lithosphere

Heating of the Terrestrial Planets

The interiors of the terrestrial planets are heated by:

 Gravitational potential energy of the accreting planetesimals are converted into thermal energy.

Radioactive Heating

Radioactive materials (e.g., uranium, potassium, thorium) decay by emitting subatomic particles (alpha particle—nuclei of helium, beta particle—electrons or positron, neutron, proton, etc.) and often gamma-ray, which collide with surrounding atoms, heating them up.

- Potassium-40 → Argon-40
- Uranium-234 \rightarrow \rightarrow Lead-206

Internal heating causes *Mantle Convection*——hot rock rises to the top and cools off, cool rock sinks to the bottom, resulting in the cooling of the planet...

How Do We Know This?

The Crust:

A Thin Rock Material

The Mantle:

A Dense and Mostly Solid Rock Material

The Outer Core:

Liquid Iron and Nickel

The Inner Core:

Solid Iron and Nickel

The Density of Earth is 5.53

The Land is covered mostly by a type of rock called Granite

(density of Granite = 2.7 gm/cm³)

The Ocean is mostly covered by a type of rock called Basalt

(density of Granite = 3.3 gm/cm³)

Density of Rocks $\approx 3 \text{ gm/cm}^3$

The Density of Earth is 5.53 gm/cm³

Density of Rocks ≈ 3 gm/cm³

Density of Iron/Nickel ≈ 8 gm/cm³

So we believe about $\frac{1}{2}$ the Earth is a Rock-like material and the other $\frac{1}{2}$ a heavy metal such as iron and nickel

The density of the Earth will be the average of the two:

$$\frac{8+3}{2} = 5.5$$

Density of Mars is 3.9 gm/cm³

What does this tell us about the interior of Mars?

Mars has a much smaller Iron Core than Earth does

What does the density tell us about the interior of these bodies? (do they have a very big core?)

Mercury

density = $5.4 \, \text{gm/cm}^3$

Venus

density = 5.2 gm/cm^3

Moon

density = 3.3 gm/cm^3

The Atmosphere of the Terrestrial Worlds

According to the Nebular Theory, the terrestrial planets were formed by metallic and rocky planetesimals. So,

Where did the gas come from?

- The gases came from comets and asteroids impact during the period of heavy bombardment.
- The gases are trapped in the interior of the planets, later released through volcanic out-gassing.

But, why are their atmosphere so different?

Table 8.1 Atmospheres of the Terrestrial Worlds

World	Composition	Surface Pressure*	Winds, Weather Patterns	Clouds, Haze
Mercury	helium, sodium, oxygen	10 ⁻¹⁴ bar	None: too little atmosphere	None
Venus	96% CO ₂ 3.5% N ₂	90 bars	Slow winds, no violent storms, acid rain	Sulfuric acid clouds
Earth	77% N ₂ 21% O ₂ 1% argon H ₂ O (variable)	1 bar	Winds, hurricanes	H ₂ O clouds, pollution
Moon	helium, sodium, argon	10 ⁻¹⁴ bar	None: too little atmosphere	None
Mars	95% CO ₂ 2.7% N ₂ 1.6% argon	0.007 bar	Winds, dust storms	H ₂ O and CO ₂ clouds, dust

^{* 1} bar ≈ the pressure at sea level on Earth.

<u>Planet</u>	Density (g/cm³)	
Mercury	5.44	
Venus	5.2	
Earth	5.52	
Mars	3.93	
Jupiter	1.3	
Saturn	0.69	The next four planets
Uranus	1.28	have lower densities
Neptune	1.64	
Pluto	2.06	

Because their densities suggest that they are mostly made of gas

The Jovian (Outer) Planets

Large, gaseous, lots of moons, rings

Jupiter's Interior

The Density of Jupiter is 1.3 gm/cm³

What does this tell us about the interior of Jupiter?

Since the density of Jupiter is so small the planet has to be made mostly of very light material

Jupiter is made mostly of Hydrogen and Helium gas

The Density of Saturn is 0.69 gm/cm³

Saturn is also made up mostly of Hydrogen and Helium

The density of Saturn is less than 1 gm/cm³ so this planet can float in water

Structures of Uranus and Neptune

Relatively thin atmospheres compared to Jupiter and Saturn, but still quite extensive compared to terrestrial planets

Interiors of Uranus's Moons

Large rock cores surrounded by icy mantles.

What does the density tell us about the interior of Uranus and Neptune?

Uranus

density = 1.28 gm/cm^3

Neptune density = 1.64 gm/cm³

Like Jupiter and Saturn these planets have low densities which suggest they are primarily made of gas.

(in this case methane)

<u>Planet</u>	Density (g/cm ³)	
Mercury	5.44	
Venus	5.2	
Earth	5.52	
Mars	3.93	
Jupiter	1.3	
Saturn	0.69	
Uranus	1.28	
Neptune	1.64 A1	nd Pluto is Somewhere
Pluto	2.06	in between

Pluto

density = 2.06 gm/cm³

Since Pluto is so far away it is hard to see the planet. Since it is good at reflecting light scientists suspect there is ice at the surface, possibly frozen Nitrogen

MARS NOS MERCURY VENUS JUPITER SATURN URANUS NEPTUNE PLUTO EARTH

Voyager Spacecraft

The Voyager
Spacecraft on
its way,
looking back
at Earth and
our Moon