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Vectors and Scalars

A Vector is a physical quantity with magnitude 

and direction:
– Displacement:  Washington D.C. is 250 miles N of Norfolk

– Wind Velocity : 20mi/hr towards SW

A Scalar is a physical quantity with magnitude (and units).  

Examples:

Temperature, Pressure, Distance, Speed



Fundamental definitions: 

Two vectors and are equal if they have 
the same magnitude and direction regardless of 
the initial points

Having direction opposite to but having the 
same magnitude

A

B

A B

A

A

A



A

C= A + B
B

Addition: C A B 

A

B

R= A + B



A

B

C

D

R=A+B+C+D

1 2 3 4netD D D D D   



Adding Vectors Geometrically

Note head-to-tail arrangement for addition



Associative Law

• Sum obeys associative law
•
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Laws of vector
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Components of a Vector

• A component is a part

• It is useful to use 

rectangular 

components

– These are the 

projections of the 

vector along the x- and 

y-axes



• An angle is positive if the rotation is 

counter clockwise from the positive x-

direction. 

• An angle is negative if the rotation is 

clockwise from the positive x-direction. 



Vector Component Terminology

• are the component vectors of 

– They are vectors and follow all the rules for 

vectors

• Ax and Ay are scalars, and will be referred to 

as the components of 

• The combination of the component vectors 

is a valid substitution for the actual vector
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• The x-component of a vector is the projection 
along the x-axis:

The y-component of a vector is 

the projection along the y-axis:

• When using this form of the equations, q must 
be measured ccw from the positive x-axis 
(mathematical standard definition)
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• The components are the legs of the right triangle 

whose hypotenuse is

– Must find θ with respect to the positive x-axis

– Use the signs of Ax and Ay  and a sketch to track 

the correct value of θ
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The Pythagorean theorem

q
q

q
tan

cos

sin


A

A

A

A

x

y

x

y

A

A
1tan q



• The components can 

be positive or negative 

and will have the same 

units as the original 

vector

• The signs of the 

components will 

depend on the angle



Vector Addition, Components

• When we add two vectors, the components 

add separately:

Cx = Ax + Bx = Bx + Ax

Cy =  Ay + By = By + Ay



Components of a Vector, final

Cx = Ax +Bx

Cy = Ay +By

C  BA
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Components of a Vector, Example

• Example: A car travels 3 km North, then 2 km Northeast, 

then 4 km West, and finally 3 km Southeast.  What is the 

resultant displacement?  Use the component method of 

vector addition.
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Ax = 0 km

Bx = (2 km) cos 45º = 1.4 km

Cx = -4 km

Dx = (3km) cos 45º = 2.1 km

X-components

Y-components

Ay = 3 km

By = (2 km) sin 45º = 1.4 km

Cy = 0 km

Dy = (3km) sin 315º = -2.1 km
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Rx = Ax + Bx + Cx + Dx = 0 km + 1.4 km - 4.0 km + 2.1 km = -0.5 km

Ry = Ay + By + Cy + Dy = 3.0 km + 1.4 km + 0 km - 2.1 km = 2.3 km
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Magnitude:

Direction:

78-=
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3.2
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R
θ

Stop. Think.  Is this reasonable? NO!  Off by 180º.

Answer: -78º + 180° = 102° from +ve x-axis.



Unit Vectors

• A unit vector has a magnitude of 1 and points 

in a particular direction

• The unit vectors in the positive directions of the 

x, y, and z axes are labeled    ,    and     . 

The arrangement of axes is a right-

handed coordinate system.

î ĵ k̂



, (x, y, z) are 
different components 
of the vector .

Magnitude of : 

2 2 2A x y z   î
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Example: Find the magnitude and the unit 
vector of a vector ˆˆ ˆ2A i j k   

Magnitude: 2 2 2( 1) 2 ( 1) 6A      

Unit vector:
1 2 1 ˆˆ ˆˆ
6 6 6

A
a i j k

A
    

ˆA AaWrite: , where



Adding Vectors by Components

• Figure shows the following three vectors:

and 

• What is their vector sum    , which is also shown?
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Solution

The magnitude is

The angle from the positive x-direction is

m6.20m6.1m2.4

cbar xxxx




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,ĵ)m3.2(î)m6.2(r 




Multiplying Vectors

• The scalar product (also known as the dot product)

cosbaba 

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Laws of dot product:



A.B= (2i + 3j) . (-i + 2j)

= -2i . i + 2i . j -3j . i +3j . 2j  =  -2 + 6 = 4

A = 2i + 3j  

B = -i + 2j

ˆˆ ˆ2A i j k    ˆˆ ˆ2 3B i j k  

5162. BA




The vector product

The right-handed rule

sinbaba 




Laws of cross product:
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Example: Evaluate the cross product of vectors

ˆˆ ˆ2A i j k    ˆˆ ˆ2 3B i j k  

kjiBA ˆ7ˆ3ˆ 




• If     = 3    - 4    and     = -2     + 3      , 

what is                 ?

The vector      is perpendicular to both 
and     .We can show that 
and
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Which figure shows 

(1) (2) (3) (4) (5)



Which figure shows 

(1) (2) (3) (4) (5)



Which figure shows 



Which figure shows 



What are the x- and y-components Cx and Cy of vector 

1) Cx= –3 cm, Cy = 1 cm

2)  Cx= –4 cm, Cy = 2 cm

3)  Cx= –2 cm, Cy = 1 cm

4)  Cx= –3 cm, Cy = –1 cm

5)  Cx= 1 cm, Cy = –1 cm



1)  Cx= –3 cm, Cy = 1 cm

2)  Cx= –4 cm, Cy = 2 cm

3)  Cx= –2 cm, Cy = 1 cm

4)  Cx= –3 cm, Cy = –1 cm

5)  Cx= 1 cm, Cy = –1 cm

What are the x- and y-components Cx and Cy of vector


