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Torque

• When you try to swing a door, it’s clear that 

it is easier to move the door if you apply the 

force farther away from the axis of rotation 

(e.g., the hinges).

• It’s also clear that the application of the 

force is most efficient if the force is applied 

perpendicular to the plane of the door.



Torque

• Lets look at an object that 
is rotating about a fixed 
axis O

• A force F is applied at 
point P which is at a 
position r relative to the 
axis O

• Note also that the force F 
is applied at an angle Φ 
relative to the vector r

• For simplicity we also 
assume that the force F is 
in the plane of the screen



Torque

• Lets decompose the 
force into its 
components relative to 
the vector r :

– The radial component 
is labeled Fr (FcosΦ)

– The tangential 
component is labeled 
Ft (FsinΦ)



Torque

• We therefore define torque to be the 

product of these two values:

• Torque comes from the Latin word 

meaning “to twist”

   sinFr



Torque

• By rearranging things a bit in the previous 
equation we can equivalently see that:

where r is the perpendicular distance from 
the rotation axis O to an extended line 
running through the vector F at point P
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Torque

• The extended line is 
called the line of action
and the value r is 
called the moment arm.

• Clearly if the force is 
applied completely 
tangentially, then the 
moment arm is just r.



If an object rotates counterclockwise then the torque is positive – and 

vice versa (remember that clocks are negative…)
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Work can also be expressed in joules (1 J = 1 N·m ), but torque is 

never expressed that way.
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که به انتهای میله صلبی به طول  m=0.17 kgآونگی تشکیل شده است از جسمی به جرم : مثال

L=1.25 m مقدار گشتاور ناشی از گرانش حول نقطه . و جرم ناچیز متصل استO در لحظه ای که آونگ

از امتداد قائم منحرف شده چقدر است؟θ=100به اندازه 

 sinrFFr 
 در آن Oجهت گشتاور حول نقطه ( ب)

گی لحظه کدام است؟ آیا جهت گشتاور بست

دارد به اینکه آونگ به کدام طرف خط 

قائم، چپ یا راست، جابجا می شود؟
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Work and Rotational Kinetic Energy

Suppose that the change in the kinetic energy is the only change 
in the overall energy of the system – thus:
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For motion confined to a single axis (let’s say the x axis) we have:
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And finally, the power is: Fv
dt
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In this case suppose that the change in the rotational 

kinetic energy is the only change in the overall 

energy of the system – thus:
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The corresponding equation for work in the rotational case is:
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when the torque is constant and the angular displacement goes 

from θi to θf
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• We have a disk with mass
M = 2.5 kg and a radius
R = 20 cm mounted on a fixed, 
frictionless axle

• A block of mass m = 1.2 kg 
hangs from a massless string 
which is wrapped around the 
disk several times

• Find the acceleration of the 
block, the angular acceleration of 
the disk and the string tension



• As usual, we begin by drawing the free body 

diagrams

• Starting with the block we see that our force 

equation turns out to be:

• We have the acceleration a in this equation, 

but we can’t solve for it yet as we don’t 

know the value of T

mamgT 

• Moving on to the disk, we can see that the torque on the disk 

is:

• (since the disk is turning clockwise, the torque is negative)

RT
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As a final check let’s see what happens when M = 0:
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.یدمثال فوق را از دیدگاه کار و انرژی بررسی کن
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Rolling

Here we can see that rolling motion is a combination of purely 

rotational and purely translational motions



• There is another way to look at this however – a 

way which sees rolling as purely rotational

• In this case we view the rotation as being around 

the point where the wheel contacts the ground…

• The rotation axis is taken 

as the point P

• The vectors in the figure 

represent the instantaneous 

velocity of various points 

on the rolling wheel



The Kinetic Energy of Rolling

• We want to calculate the 

kinetic energy of a wheel 

rotating about the axis P

• We know that (since this is 

a purely rotational view of 

the problem) we have:
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The Kinetic Energy of Rolling

• Substituting for IP in our equation for K and then 

expanding it out we get:

• and when we also substitute in vcm = ωR we get:
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The Kinetic Energy of Rolling

But this is exactly equivalent to the kinetic energy 

of a wheel rotating about it’s CM added to the 

kinetic energy of a body’s CM in translation:

22

2

1

2

1
cmcm MvIK  

Rotational 

Kinetic Energy

Translational 

Kinetic Energy



A uniform solid cylindrical disk, of mass M = 1.4 kg and radius 

R = 8.5 cm, rolls smoothly across a horizontal table at a 

speed of 15 cm/s.

What is the kinetic energy K of the disk?
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It doesn’t depend on the radius of the disk



Rolling Motion

Objects of different I rolling down an inclined 
plane:
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Rolling...

• If there is no slipping:

v
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In the lab reference frame
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In the CM reference frame
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Rolling...

K 
1

2
I 2 

1

2
Mv2

K 
1

2
cMR2 2 

1

2
Mv2 

1

2
c 1 Mv2

Use v = R and I = cMR2 .
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The rolling speed is always lower than in the case of simple sliding

since the kinetic energy is shared between CM motion and rotation.

hoop:    c = 1

disk:      c = 1/2

sphere: c = 2/5

etc...



Moment of Inertia: Sphere






