

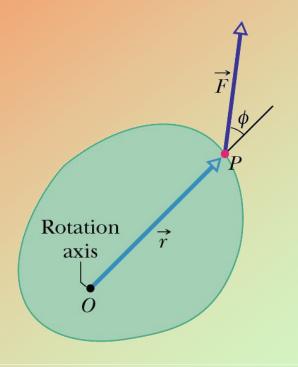
صحرایی <u>گروه فیزیک دانشگاه رازی</u>

http://www.razi.ac.ir/sahraei

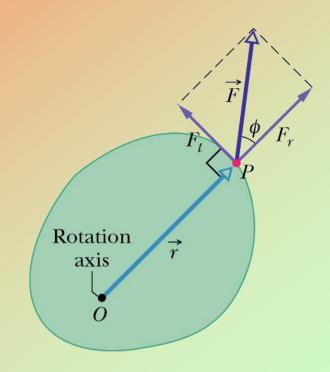
 When you try to swing a door, it's clear that it is easier to move the door if you apply the force farther away from the axis of rotation (e.g., the hinges).

• It's also clear that the application of the force is most efficient if the force is applied perpendicular to the plane of the door.

- Lets look at an object that is rotating about a fixed axis *O*
- A force *F* is applied at point *P* which is at a position *r* relative to the axis *O*
- Note also that the force F is applied at an angle Φ relative to the vector r
- For simplicity we also assume that the force *F* is in the plane of the screen



- Lets decompose the force into its components relative to the vector r :
 - The radial component is labeled $F_r(F\cos\Phi)$
 - The tangential component is labeled $F_t(Fsin\Phi)$



• We therefore define *torque* to be the product of these two values:

$$\tau = (r)(F\sin\phi)$$

• Torque comes from the Latin word meaning "to twist"

• By rearranging things a bit in the previous equation we can equivalently see that:

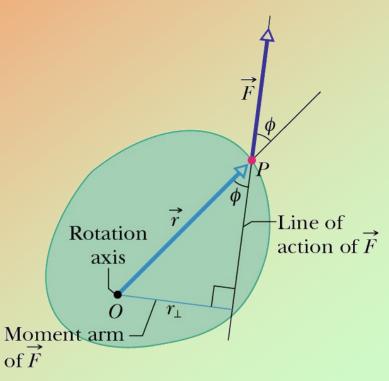
$$\tau = (r)(F \sin \phi) = rF_t$$

$$\tau = (r \sin \phi)(F) = r_\perp F$$

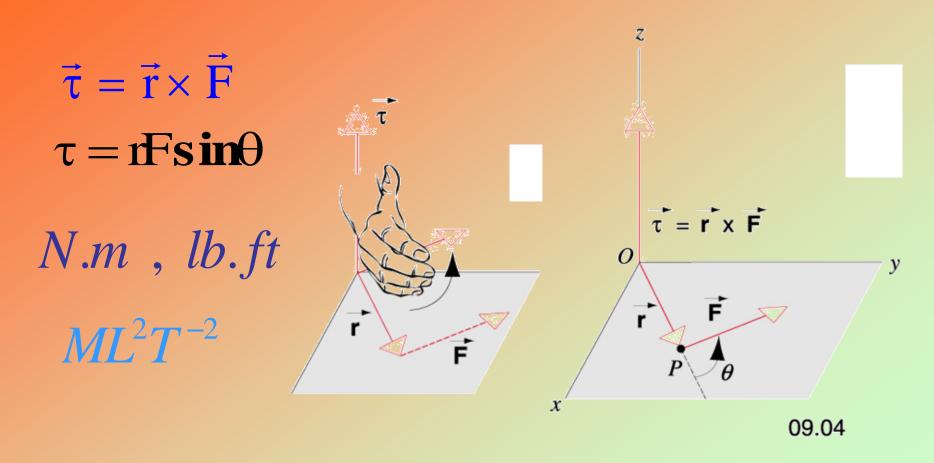
where r_{\perp} is the perpendicular distance from the rotation axis *O* to an extended line running through the vector *F* at point *P*

• The extended line is called the *line of action* and the value r_{\perp} is called the *moment arm*.

• Clearly if the force is applied completely tangentially, then the moment arm is just *r*.



If an object rotates counterclockwise then the torque is positive – and vice versa (remember that clocks are negative...)



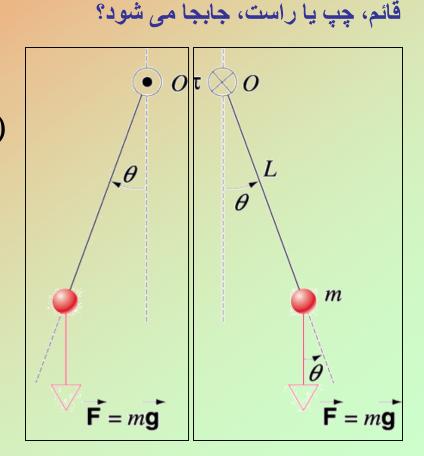
Work can also be expressed in joules $(1 J = 1 N \cdot m)$, but torque is never expressed that way.

مثال: آونگی تشکیل شده است از جسمی به جرم m=0.17 kg که به انتهای میله صلبی به طول L=1.25 m و جرم ناچیز متصل است. مقدار گشتاور ناشی از گرانش حول نقطه O در لحظه ای که آونگ به اندازه 0=10 از امتداد قائم منحرف شده چقدر است؟

$$\vec{\tau} = \vec{r} \times \vec{F} = rF\sin\theta$$

 $\tau = Lmg\sin\theta$

 $= (1.25m)(0.17kg)(9.8m/s^{2})$ (sin 10⁰) = 0.36N.m



(ب) جهت گشتاور حول نقطه () در آن

دارد به اینکه آونگ به کدام طرف خط

لحظه كدام است؟ آيا جهت گشتاور بستگي

 $mar = I\alpha \qquad a_T = r\alpha$

 \mathcal{T}

$$I = mr^2$$

Work and Rotational Kinetic Energy

Suppose that the change in the kinetic energy is the <u>only</u> change in the overall energy of the system – thus:

$$\Delta K = K_f - K_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = W$$

For motion confined to a single axis (let's say the *x* **axis) we have:**

$$W = \int_{x_i}^{x_f} F dx \qquad W = F(x_f - x_i)$$

And finally, the power is:

$$P = \frac{dW}{dt} = Fv$$

In this case suppose that the change in the rotational kinetic energy is the <u>only</u> change in the overall energy of the system – thus:

$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W$$

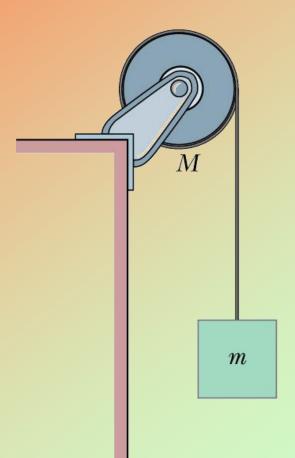
The corresponding equation for work in the rotational case is:

$$W = \int_{\theta_i}^{\theta_f} \tau d\theta \qquad \qquad W = \tau \left(\theta_f - \theta_i \right)$$

when the torque is constant and the angular displacement goes from θ_i to θ_f

$$P = \frac{dW}{dt} = \tau\omega$$

- We have a disk with mass
 M = 2.5 kg and a radius
 R = 20 cm mounted on a fixed,
 frictionless axle
- A block of mass m = 1.2 kg hangs from a massless string which is wrapped around the disk several times
- Find the acceleration of the block, the angular acceleration of the disk and the string tension



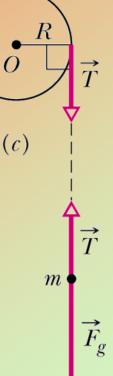
- As usual, we begin by drawing the free body diagrams
- Starting with the block we see that our force equation turns out to be:

$$T - mg = ma$$

- We have the acceleration *a* in this equation, but we can't solve for it yet as we don't know the value of *T*
- Moving on to the disk, we can see that the torque on the disk is:

$$\tau = -RT$$

• (since the disk is turning clockwise, the torque is negative)

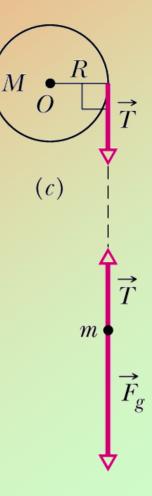


$$\tau_{net} = I\alpha \qquad I = \frac{1}{2}MR^{2}$$
$$-RT = \frac{1}{2}MR^{2}\alpha \qquad a_{T} = \alpha R \qquad \alpha = \frac{a}{R}$$
$$T = -\frac{1}{2}Ma \qquad T - mg = ma$$
$$a = -g\frac{2m}{M + 2m} = -4.8 \text{ m/s}^{2}$$
$$T = -\frac{1}{2}Ma = 6.0 \text{ N}$$
$$\alpha = \frac{a}{R} = \frac{2-4.8m/s^{2}}{0.2m} = -24r \text{ ad/s}^{2} = -3.8r \text{ ev/s}^{2}$$

As a final check let's see what happens when M = 0:

$$a = -g \frac{2m}{M + 2m} = -g$$
$$T = \frac{1}{2}Ma = 0$$

مثال فوق را از دیدگاه کار و انرژی بررسی کنید.



$$W_{net} = mgL$$

$$\Delta K = K_f - K_i = K_f = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2$$

$$W_{net} = \Delta K$$

$$mgL = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 = \frac{1}{2}(\frac{1}{2}MR^2)(\frac{v}{R})^2 + \frac{1}{2}mv$$

$$v^2 = 2\left[\frac{2mg}{M+2m}\right]L \qquad v^2 = v_0^2 + 2ax$$

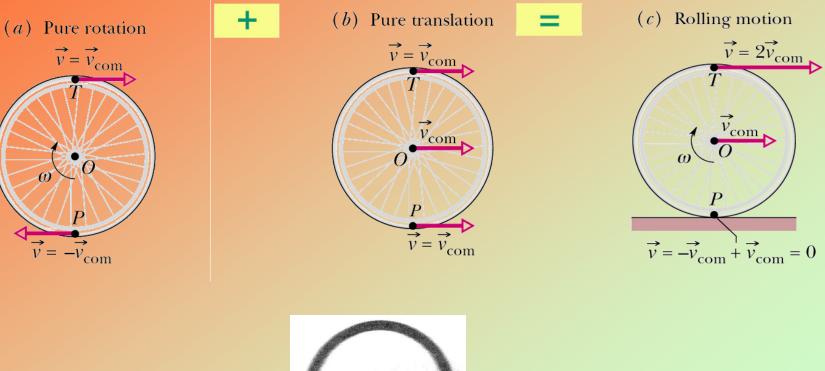
 $W_{net} = mgL - TL$ $mgL - TL = \frac{1}{2}mv^2$

 $W_{net} = TR\phi = TL$

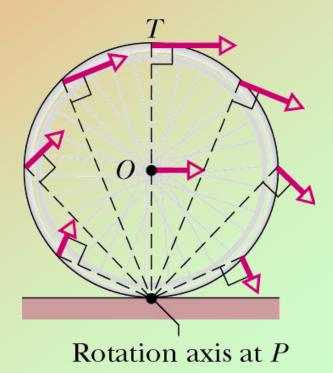
 $\Delta K = \frac{1}{2} I \omega^2 = \frac{1}{2} \left(\frac{1}{2} M R^2\right) \frac{v^2}{R^2} = \frac{1}{4} M v^2$ $TL = \frac{1}{4}Mv^2$

Rolling

Here we can see that rolling motion is a combination of purely rotational and purely translational motions

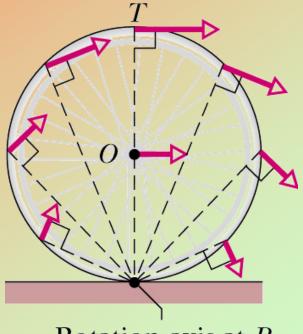


- There is another way to look at this however a way which sees rolling as purely rotational
- In this case we view the rotation as being around the point where the wheel contacts the ground...
- The rotation axis is taken as the point *P*
- The vectors in the figure represent the instantaneous velocity of various points on the rolling wheel



The Kinetic Energy of Rolling

- We want to calculate the kinetic energy of a wheel rotating about the axis *P*
- We know that (since this is a purely rotational view of the problem) we have:



Rotation axis at P

$$K = \frac{1}{2} I_P \omega^2 \quad I_P = I_{cm} + MR^2$$
$$K = \frac{1}{2} (I_{cm} + MR^2) \omega^2$$

The Kinetic Energy of Rolling

 Substituting for I_P in our equation for K and then expanding it out we get:

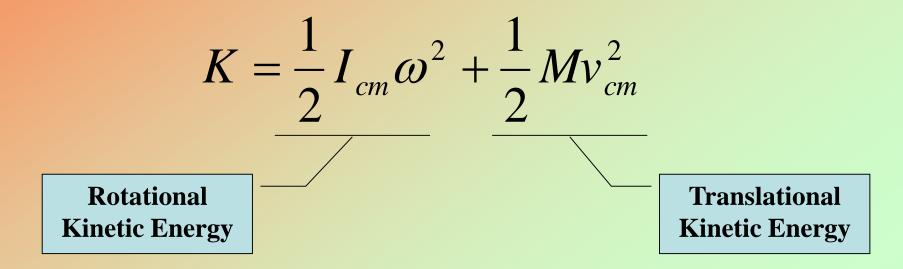
$$K = \frac{1}{2} I_{cm} \omega^2 + \frac{1}{2} M R^2 \omega^2$$

• and when we also substitute in $v_{\rm cm} = \omega R$ we get:

$$K = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}Mv_{cm}^2$$

The Kinetic Energy of Rolling

But this is exactly equivalent to the kinetic energy of a wheel rotating about it's CM added to the kinetic energy of a body's CM in translation:



A uniform solid cylindrical disk, of mass M = 1.4 kg and radius R = 8.5 cm, rolls smoothly across a horizontal table at a speed of 15 cm/s.

What is the kinetic energy K of the disk?

$$K = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}Mv_{cm}^2$$
ed of the center of mass So v = 15 cm/s = 0.15 m/s

speed of the center of mass So $v_{\rm cm}$

$$\omega = \frac{v_{cm}}{R} \qquad I_{cm} = \frac{1}{2}MR^2$$

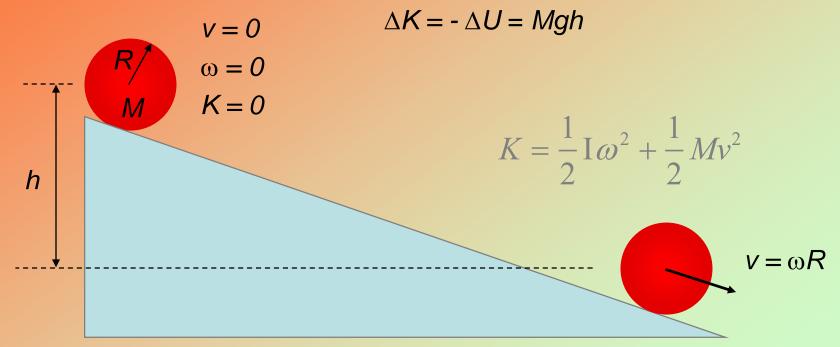
$$K = \frac{1}{2} I_{cm} \omega^{2} + \frac{1}{2} M v_{cm}^{2}$$
$$K = \frac{1}{2} \left(\frac{1}{2} M R^{2} \right) \left(\frac{v_{cm}}{R} \right)^{2} + \frac{1}{2} M v_{cm}^{2}$$
$$K = \frac{3}{4} M v_{cm}^{2}$$

It doesn't depend on the radius of the disk

$$K = \frac{3}{4} (1.4 \text{ kg}) (0.15 \text{ m/s})^2 = 0.024 \text{ J}$$

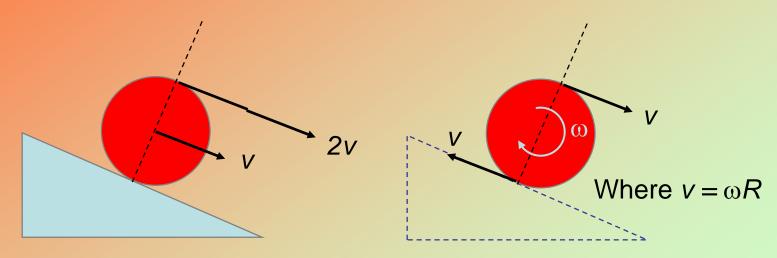
Rolling Motion

Objects of different *I* rolling down an inclined plane:



Rolling...

• If there is no slipping:



In the lab reference frame

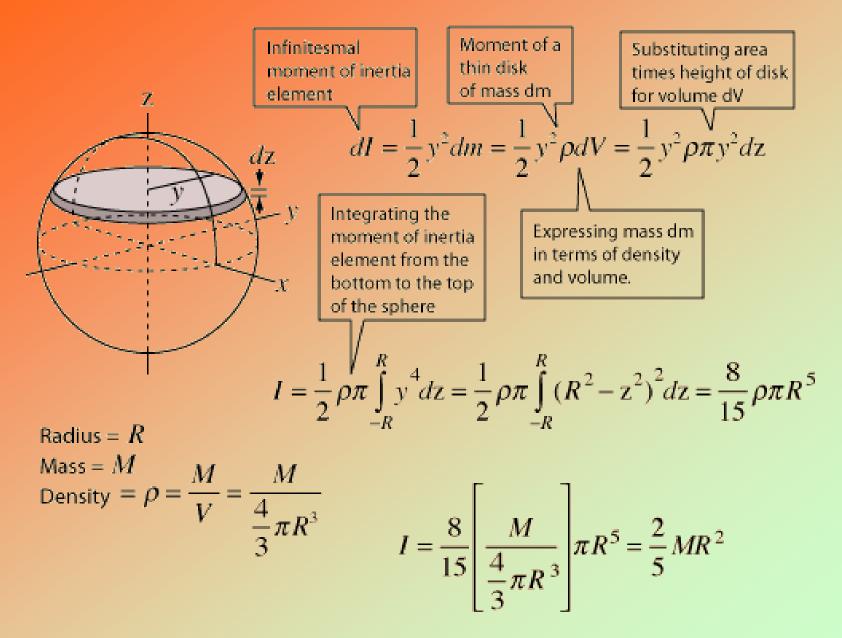
In the CM reference frame

Rolling...



The rolling speed is always lower than in the case of simple sliding since the kinetic energy is shared between CM motion and rotation.

Moment of Inertia: Sphere



Find y in terms of
the variable of
integration z
Find y in terms of
the variable of
integration z

$$V^{2} = R^{2} - z^{2}$$

$$R^{2} = \frac{R^{2} - z^{2}}{R^{2}}$$

$$R^{2} = R^{2} - z^{2}$$

$$R^{2} = \frac{R^{2} - z^{2}}{R^{2}}$$

$$R^{2} = R^{2} - z^{2}$$

$$R^{2} = \frac{R^{2} - z^{2}}{R^{2}}$$

$$R^{2} = R^{2} - z^{2}$$

$$R^{2} = \frac{R^{2} - z^{2}}{R^{2}}$$

$$R^{2} = R^{2} - z^{2}$$

$$R^{2} = \frac{R^{2} - z^{2}}{R^{2}}$$

$$R^{2} = R^{2} - z^{2}$$

$$R^{2} = R^{2} - z^{2} - z^{2}$$

$$R^{2} = R^{2} - z^{2} - z^{2}$$

$$R^{2$$

- Rotational inertia involves not only the mass but also the distribution of mass for continuous masses
- Calculating the rotational inertia $I = \int r^2 dm$

