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Torque

* \When you try to swing a door, it’s clear that
It IS easier to move the door if you apply the
force farther away from the axis of rotation
(e.g., the hinges).

 |t’s also clear that the application of the
force 1s most efficient if the force is applied
perpendicular to the plane of the door.



Torque

Lets look at an object that
IS rotating about a fixed
axis O

A force F Is applied at
point P which is at a
position r relative to the
axis O

Note also that the force F
Is applied at an angle @&
relative to the vector r

For simplicity we also
assume that the force F Is
In the plane of the screen

I3
VV
P
Rotation L.
r

axis

y

O



Torque

o |ets decompose the
force Into Its
components relative to
the vector r :

— The radial component

Rotation /_,

IS labeled F, (Fcos®) L -
— The tangential 5

component is labeled
F. (FSIin®)



Torque

» \We therefore define torque to be the
product of these two values:

r=(r)Fsin ¢)

e Torgue comes from the Latin word
meaning “to twist”



Torque

« By rearranging things a bit in the previous
equation we can equivalently see that:

r=(r)Fsin¢)=rF.
r=(rsin gp)F)=rF

where r IS the perpendicular distance from
the rotation axis O to an extended line
running through the vector F at point P



Torque

 The extended line is
called the line of action %
and the value r Is
called the moment arm.

Line of
.

Rotation : >
: action of F

axis /'

o Clearly if the force iIs .
applied completely Mopentam=
tangentially, then the
moment arm Is Just r.



rque is positive — and

e...)

T=rXxF

r 'Fzy
P\§
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Work can also be expressed in joules (1 J =1 N-m ), but torque is
never expressed that way.
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Work and Rotational Kinetic Energy

Suppose that the change in the kinetic energy is the only change
In the overall energy of the system — thus:

AK =K, —K. :%mvf —%mvﬁ =W

For motion confined to a single axis (let’s say the x axis) we have:

W:dex W = F(x, —x)

dW
And finally, the power is: P = s = Fv



In this case suppose that the change in the rotational
Kinetic energy Is the only change in the overall
energy of the system — thus:

AK =K, - K =5|a)§ —lla)f =W
2 2

The corresponding equation for work in the rotational case is:

O
W = o W =19, -0,
6

when the torque is constant and the angular displacement goes
from @, to 6; dw



* \We have a disk with mass
M = 2.5 kg and a radius
R =20 cm mounted on a fixed,
frictionless axle

* Ablock of mass m = 1.2 kg
hangs from a massless string
which Is wrapped around the
disk several times

 Find the acceleration of the
block, the angular acceleration of
the disk and the string tension




« As usual, we begin by drawing the free body
diagrams

« Starting with the block we see that our force
equation turns out to be: (o)

T —mg =ma

- We have the acceleration a in this equation, mTT
but we can’t solve for it yet as we don’t
know the value of T F,

« Moving on to the disk, we can see that the torque on the disk
IS:

T =—RT

* (since the disk is turning clockwise, the torgue is negative)



Z-net y |0[ | :EMRZ
_RT =~ MR% B =R =2
2 R
T:_lMa T —mg =ma
2
= P =—-4.8m/s*
M +2m

> 2
=T _ el — 24rad/s® =-3.8rev’s?

R 0.2m




As a final check let’s see what happens when M = 0:

2m
a=— —
M +2m
T:EMazO .
2 T

m

S e s 5 9 S o8 311 (368 Jlia F,



Wnet =mgL

AK:Kf—Ki:Kf:EIa)ZJrEm/Z
2 2
W, =AK
mgL:E 0% + = my? :1(E MRZ)(X)2 I my?
2 2 2 2 R 2
- 2mg | 2 2
=2 L =
e V° =V, +2ax

L 2
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IS a combination of purely
ational motions

(b) Pure translation = (¢) Rolling motion

- — —>
V="Veom Adis 2Vom

—>
com YV =—




* There iIs another way to look at this however —a
way which sees rolling as purely rotational

 In this case we view the rotation as being around
the point where the wheel contacts the ground...

 The rotation axis Is taken
as the point P

* The vectors in the figure
represent the instantaneous
velocity of various points
on the rolling wheel

Rotation axis at P



The Kinetic Energy of Rolling

» \We want to calculate the
Kinetic energy of a wheel
rotating about the axis P

» \We know that (since this Is
a purely rotational view of

the probllem) we have:
K =§|F,co2 . =1_ +MR?

Rotation axis at P

K = %(Icm +MR?%)w*



The Kinetic Energy of Rolling

 Substituting for I In our equation for K and then
expanding it out we get:

« and when we also substitute inv,,, = @R we get:



The Kinetic Energy of Rolling

But this Is exactly equivalent to the kinetic energy
of a wheel rotating about it’s CM added to the
Kinetic energy of a body’s CM In translation:

1 1
K s | o’ +§I\/Ivfm
Rotational J x Translational

Kinetic Energy Kinetic Energy




A uniform solid cylindrical disk, of mass M = 1.4 kg and radius
R = 8.5 cm, rolls smoothly across a horizontal table at a
speed of 15 cm/s.

What is the kinetic energy K of the disk?

K =21 o+ M2
2 2

speed of the center of mass So v, =15 cm/s = 0.15 m/s

a)zvcm ICmZEMRZ
R 2




K = p |, o° +1I\/IVCZrn

2 2
2

K ==(2MR? | Yen | 4 1mv2
2\ 2 R 2

K = P Mv?Z
4

It doesn’t depend on the radius of the disk

K = §(1.4 kg )0.15m/s )" = 0.024 ]

A



Rolling Motion

Objects of different I rolling down an inclined
plane:

v
______ ®
K

AK = - AU = Mgh

T T
o o ©




Rolling...

o |If there iIs no slipping:

2V

=~.. Wherev =onR

In the lab reference frame In the CM reference frame



Rolling...

Usev=onRandl=cvrz, hoop: c=1

disk: c¢c=1/2
1 | |
K = ECMRZ@2 + EMV2 - E(C +1)Mv* sphere: ¢ = 2/5
etc...

: / 1
= C |:> v:‘lzgh —1
C +

The rolling speed is always lower than in the case of simple sliding
since the Kinetic energy Is shared between CM motion and rotation.



ertia: Sphere

initesmal Mc:rnernt of Substituting area
ment of inertia thin disk times height of disk
of mass dm for volume dv
R 1 P,

dl = 5 ydm = 2y pdV = =y pry’dz

]\ 2

¥ | Integrating the :
moment of inartia Expressing mass dm
element fram the In terms of density
X | bottamta the top and volume.
of the sphere
R R
1 V 4 | g
f —Epn’j}' dz=—p:r_[{R2—f} dﬂ:_pﬁﬁﬁ
Radius = K P R
Mass = M M M
Density = P = — - T
v 4 .
SR 8| M 2
1= 3 [FR =5 MR
—7R"
e




Integrating the
moment of inertia {Ri— zi}iz R4—2R21.1+ 14
element from the
battam to the tap Polynomual

of the sphere farm integral

Radius = K I
Mass = M K ZREH 51" s{15 10 3
Lﬁdz: RY'z-222 42 =2R[ = ]
_ e 3 5, 15 15 15
Density
M M 3
v 4 I=—pnR’



* Rotational inertia involves not only the mass but also
the distribution of mass for continuous masses

* Calculating the rotational inertia I= I r’dm
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