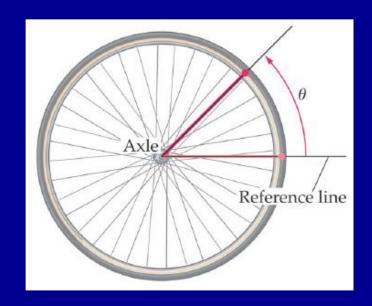


Rotational Kinematics

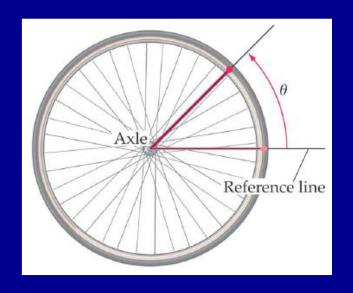


Rotational kinematics Linear kinematics

Angular Position θ x

Angular Velocity ω v

Angular Acceleration α a



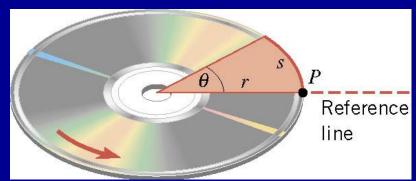
Angular displacement is expressed in one of three units:

- 1. Degree
- 2. Revolution (rev)
- 3. Radian (rad)

 $\theta = 0$: Reference line

 $\theta > 0$: Counterclockwise

 θ < 0: Clockwise



$$\theta$$
 (in radians) = $\frac{arc\ length}{Radius} = \frac{s}{r}$

For 1 full rotation,
$$\theta = \frac{2\pi r}{r} = 2\pi \ rad$$

 $\therefore 1 \ rev = 360^{\circ} \ degree = 2\pi \ rad$

$$1 \ rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

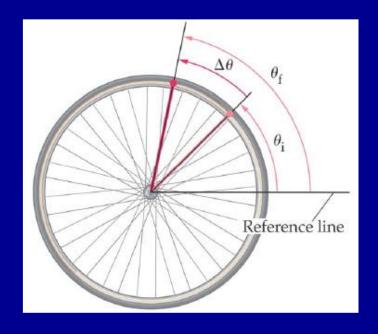
$$1 \ rad = 1 \ rev/2\pi = 0.159 \ rev$$

Angular Velocity

The average angular velocity of an object undergoing rigid rotation is defined as the angular displacement $\Delta\theta$ of any point on the object divided by the time Δt taken for that point to sweep through the displacement $\Delta\theta$:

$$\overline{\omega} = \frac{\theta_f - \theta_i}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

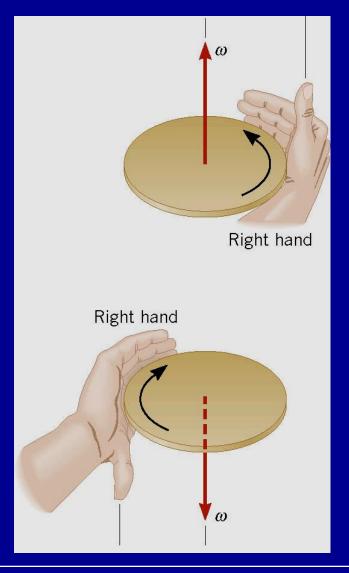
The instantaneous angular velocity is defined as the limiting value of the average angular velocity when Δt goes to zero:



$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$$
 $\omega = \frac{d\theta}{dt}$ The SI unit of angular velocity is radians per second (rad/s)

The vector nature of angular velocity

We have treated angular velocity as a scalar, though in truth it is a vector quantity. The angular velocity vector is parallel to the axis of rotation, and the direction it points is given by the right hand rule: grasp the axis of rotation with your right hand so that your fingers curl in the direction of rotation; then the direction your extended thumb points in is the direction of the angular velocity vector.



Angular Acceleration

• The average angular acceleration of an object undergoing rigid rotation is the change in the angular velocity of the object within the time interval Δt :

$$\overline{\alpha} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$$

• The instantaneous angular acceleration is defined as the limiting value of the average angular acceleration when Dt goes to zero:

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} \qquad \alpha = \frac{d\omega}{dt}$$

• The SI unit of angular acceleration is radians per second-squared (rad/s²)

Symbols Used in Rotational and Linear Kinematics

Rotational Motion	Quantity	LinearMotion
$oldsymbol{ heta}$	Displacement	X
ω_{0}	Initial velocity	V_0
ω	Final velocity	V
α	Acceleration	a
t	Time	t

دوران با شتاب زاویه ای ثابت

$$d\omega = \alpha dt$$

$$\int_{\omega_0}^{\omega} d\omega = \int_0^t \alpha dt = \alpha \int_0^t dt$$

$$\omega - \omega_0 = \alpha t$$

$$\omega = \omega_0 + \alpha t$$

$$v = v_0 + at$$

The Equations of Kinematics for Rational and Linear Motion

Linear Motion (a = constant)

$$v = v_0 + at$$

$$x = x_0 + \frac{1}{2}(v_0 + v)t$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Rotational Motion $(\alpha = constant)$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \frac{1}{2}(\omega_0 + \omega)t$$

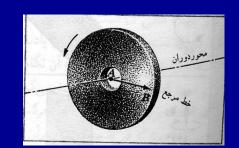
$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$
 $\omega^{2} = \omega_{0}^{2} + 2\alpha(\theta - \theta_{0})$

مثال(1): سنگ سنباده ای در لحظه t=0 با شتاب زاویه ای ثابت α برابر با t=0 با نقل این α حالت سکون شروع به حرکت می کند. در t=0 خط مرجع α افقی است. (الف) جابجایی زاویه ای خط α (و در نتیجه سنگ سنباده) چقدر است؟

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$t = 0, \ \theta_0 = 0, \ \omega = \omega_0 = 0$$



$$\theta = 0 + (0)(2.7s) + \frac{1}{2}(3.2rad/s^2)(2.7s)^2$$

$$=11rad=1.9rev$$

(ب) سرعت زاویه ای سنگ سنباده در زمان $t=2.7 \, \mathrm{s}$ چقدر است؟

$$\omega = \omega_0 + \alpha t = 0 + (3.2 rad / s^2)(2.7 s)$$

$$= 8.6 rad / s = 1.4 rev / s$$

مثال(2): فرض کنید که موتور چرخاننده سنگ سنباده مثال 1 در زمانی که سنگ با سرعت زاویه ای 8.6 rad/s می چرخد خاموش شود. نیروی اصطکاکی کوچک وارد بر محور موجب یک شتاب زاویه ای اویه ای منفی ثابت می شود و سرانجام چرخ پس از 192s متوقف می شود. (الف) شتاب زاویه ای را تعیین کنید.

$$\alpha = \frac{\omega - \omega_0}{t} = \frac{0 - 8.6 rad / s}{192 s} = -0.045 rad / s$$

(ب) زاویه ای را که چرخ قبل از توقف پیموده است تعیین کنید.

$$\theta = \theta_0 + \frac{\omega + \omega_0}{2}t = 0 + \frac{8.6rad/s + 0}{2}(192s)$$

=826rad = 131rev

Angular, tangential and radial variables

A point on an object undergoing rigid rotation is described by its radius r and the following angular variables:

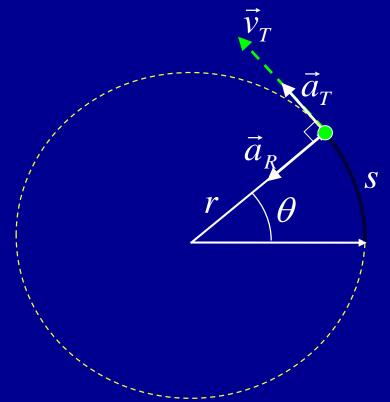
 θ – angle

 ω – angular velocity

α – angular

acceleration tangential components:

v_T - tangential velocity a_T tangential acceleration



radial components:

a_R - radial acceleration the radial velocity is 0!

• Notes:

the uniform circular motion we studied in chapter 5 is a special case of rigid rotation, where the angular acceleration is zero.

if the angular acceleration is non-zero, then the motion traced out by a point on the circle is called *nonuniform* circular motion

