Physics 1

Lecture 19

Sahrael



Review of Lecture 18

Potential Energy
— Work and Potential Energy
— Conservative & Nonconservative Forces

Path Independence of Conservative Forces

Determining Potential Energy Values

— Gravitational PE
— Elastic PE

Conservation of Mechanical Energy



Review of Lecture 18

« Reading a Potential Energy Curve
— Turning points & Equilibrium points

» Work Done on a System by an External Force
— With & Without Friction

» Conservation of Energy



Systems of Particles

* \We have discussed parabolic trajectories using a
“particle” as the model for our objects

« But clearly objects are not particles — they are
extended and may have complicated shapes &
mass distributions

« So If we toss something like a baseball bat into the
alr (spinning and rotating in a complicated way),
what can we really say about it’s trajectory?



Center of Mass

« There is one special location in every object
that provides us with the basis for our
earlier model of a point particle

 That special location is called the center of
mass

« The center of mass will follow a parabolic
trajectory — even If the rest of the bat’s
motion Is very complicated



System of Particles: Center of Mass

The center of mass Is where the system Is balanced!




To start, let’s suppose that we have two
masses m, and m,, separated by some
distance d

We have also arbitrarily aligned the origin
of our coordinate system to be the center of
mass m,

We define the center of mass for these two
particles to be:




» From this we can see that if m, =0, then x., =0
« Similarly, if m, =0, then x,, = d

y

Finally, if m; = m,, then x_, = %d

So we can see that the center of mass In this case IS
constrained to be somewhere between x =0and x =d



 Now lets shift the

origin of the | )
coordinate system a l ,
little =

* \We now need a
more general
definition of the
center of mass

o= M +m,X,
m, +m,

cm

« Note that if x, = 0 we are back to the previous equation



* Now let’s suppose that we have lots of
particles — all lined up nicely for us on the x

axIs
 The equation would now be:
S M X+ My X+ M X
cm M

where M=m;+m, + ...+ m_

X

numerator can be rewritten XC —

The collection of terms in the 1
ET
M M | |

as a sum resulting in: =1



This result is only for one dimension however, so the
more generalized result for 3 dimensions is shown
here:
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 Noticing that X, and x;, etc. are distances along
the main axis of our coordinate system, we
could just as easily switch to vector notation

* First recall that the position of mass m; using
vector notion would be:

[=xl+Y,]+2K

 Our center of mass equation using vector
notation would therefore be:

1i
r.=— > mt
cm i
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* Remember that the CM Is a point that acts as
though all of the mass in the system were located
there

» S0 even though we may have a large number of
particles — possibly of different masses, we can
treat the assembly as having all of it’s mass at the
point of It’s CM

» S0 we can assign that point a position, a velocity
and an acceleration



> F. 1S the net of all of the external forces acting
upon our system of particles; internal forces are not
Included (as they generally have no net effect)

M 1s the total mass of the system (and Is assumed to
be constant)

d.m 1S the acceleration of the center of mass; we
can’t say anything about what the acceleration might
be of any other part of the system



* Note however that the center of mass doesn’t
necessarily have to lie within the object or have
any mass at that point:

— The CM of a horseshoe 1s somewhere in the middle
along the axis of symmetry.

— The CM of a doughnut is at it’s ‘geographic’ center,
but there is no mass there either



Center of Mass

» Going back to our
baseball bat, the CM
will lie along the
central axis (the axis of
symmetry)

« And it is the CM that
faithfully follows the
line of a parabola




Moon
Earth

the center of mass of the Earth-moon system is about 1600 km below the surface
of the Earth.



http://en.wikipedia.org/wiki/Image:Orbit3.gif

* \When a fireworks rocket explodes, the CM
of the system does not change; while the
fragments all fan out, their CM continues to
move along the original path of the rocket




 \What Is the acceleration of the CM and In
what direction does it move?

e Solve for the net force: then
USG ZFnet :Macom

e Assume that all of the mass
IS concentrated at the CM:;
e.g,M=m;+m,+m,




1
Xy = M(mlxl +M, X, +M,X,)

cm

— ﬁ [(4kg)(— 2cm) + (8kg )(4cm) + (4kg)(lcm)]| = 1.75cm

1
Yem = ﬁ(mlyl +M,Yy, + m3y3)
1

= Iokg [(4kg)(3cm) + (8kg)(2cm) + (4kg)(—20m): 1.25cm

Fext,x
=—6N + (12N)(cos 45”) +14N =16.5N

— le T |:2x T F3X




I:ext,y
— 0+ (12N)(sin 45°) + 0 = 8.5N

=k, +F,, +F,

o = (Focs)? +(Fug,)? = (165N)? + (85N)? =18.6N

net

F
p=tan T2 = fan™ - =27°
o 16.5N
F .
a =—2_ 186N =1.1m/s°

™M 16.4kg
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X component T =Ma,,,

y component :m;g—-N+m,g—-T =Ma,,,

m;g = N




cla alual 2 S 4

 As the number of particles gets to be large
(as it would be for everyday objects like a
baseball bat or a fighter jet), the easiest
thing to do Is to treat the object as a
continuous distribution of matter

» The ‘particles’ then become differential
mass elements and the sums become
Integrals



This result is only for one dimension however, so the
more generalized result for 3 dimensions is shown
here:
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Given continuous matter, the location of the center of
mass becomes:

X, _MélrLrEOZx om, ——jxdm
Yem :ijdm

zm:ﬁjzdm




Moving over to the integral form is nice, but
now the problem is one of dealing with the
non-uniformity of mass distribution in our
everyday objects

For this course, we will assume uniform
objects — objects with a uniform density

_dm_ M
P4V~ v
dm:MdV

V



Center of Mass

* If we now substitute 1
for dm in the e :VdeV
previous Integrals, .
Wwe get: . dV
« Now we are simply Yo V jy

Integrating over the 1
volume of the object Lom = \7_[ Z dV





http://www.fas.harvard.edu/~scidemos/NewtonianMechanics/CenterofMass/CenterofMass04.jpg
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Linear Momentum

The linear momentum of a particle Is a vector
defined as:

p=mv

« Newton actually expressed his 2" law of motion in
terms of momentum:

— The time rate of change of the momentum of a
particle is equal to the net force acting on the
particle and is in the direction of that force

Ifnet = d_p
dt



L Inear Momentum

e Because acceleration is the time derivative
of velocity, we can also state the law as:

Ifnet:dp . = IE mnY _ma
dt dt dt

* These two ways of expressing the force on a
particle are entirely equivalent

F =
dt

F _=ma

net

|






Linear Momentum of a System of Particles

* Now suppose that we have a system of n
particles, each with their own mass and
velocity — and therefore momentum.

» The particles may interact with each other
and there may be external forces acting on
the system (e.g., the collection of particles)



The system as a whole has a total linear
momentum which is defined to be the
vector sum of the momenta of the individual
particles, thus:



—

P=Mv_

« where M = the total mass and v, IS the
velocity of the center of mass.

* The linear momentum of a system of

particles is equal to the product of the total

mass M of the system and the velocity of the
center of mass.



If we take the time derivative of the previous
equation, we get:
av,

dP R
— =M = Ma,_,
dt dt

which of course leads us straight to:

—

. P
ZFnet _E



Conservation of Linear Momentum

» Suppose we have a system that has no
external forces acting upon it (the system Is
Isolated) and no particles enter or leave the
system (the system Is closed)

 We then know that JF, .. = 0 which In turn
means that dP/dt = 0, or that:

P = constant (in a closed, isolated system)



e |n other words:

— If no net force acts upon a system of particles,
the total linear momentum JP of the system
cannot change

 This very important result is called the law
of conservation of linear momentum

« It can also be written as: 3 P, = > P;



 Because these are vector equations, we can
derive a little more insight if we further
examine what they mean along each

dimension:

— If the component of a net external force on a
closed system Is zero along an axis, then the
component of the linear momentum of the
system along that axis cannot change
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A space hauler with an initial velocity v; = 2100 km/hr
separates from it’s cargo container

The cargo module has a mass of 0.2M where M is the initial
mass of the hauler plus cargo module

After separation, the hauler has a velocity of +500 km/hr
relative to the cargo module

What is the velocity of the hauler relative to the sun?

\

Hauler

. 0.20M 0.80M
Cargo module




» \We will assume that the system consists of
the hauler & cargo module — and Is closed

 Because It Is closed, we know that
conservation of momentum will hold and
that > P, = > P;
Pi — MVi

where vi Is the velocity of the combined hauler & module
relative to the sun

et v\, and v be the velocities of the ejected cargo
module and the hauler respectively, relative to the sun
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 After the cargo module has been ejected, the total
linear momentum of the system Is:

P. =(0.20M v, ¢ +(0.80M v,

« We don’t know what v, IS, but we can relate it to
other factors as follows:

Vs = Vg T Vs

rel

VMS — VHS _Vrel



We can now substitute v,,s back into our
equation for the final linear momentum:

P, =0.20M (v, —V,,, )+0.80Mv,

Rearranging a little gives us:

Mv, = M (v, —0.20Mv,, )
Vs =V, +0.20v

Finally, we can substitute in the known values and
solve for v, to get:

Vi = 2100 knvhr +(0.20)(500 krvhr )
Vis = 2200 krvhr






