Physics 1

Lecture 19

Sahraei

Physics Department, Rayi University

Review of Lecture 18

- Potential Energy
- Work and Potential Energy
- Conservative \& Nonconservative Forces
- Path Independence of Conservative Forces
- Determining Potential Energy Values
- Gravitational PE
- Elastic PE
- Conservation of Mechanical Energy

Review of Lecture 18

- Reading a Potential Energy Curve
- Turning points \& Equilibrium points
- Work Done on a System by an External Force
- With \& Without Friction
- Conservation of Energy

Systems of Particles

- We have discussed parabolic trajectories using a "particle" as the model for our objects
- But clearly objects are not particles - they are extended and may have complicated shapes \& mass distributions
- So if we toss something like a baseball bat into the air (spinning and rotating in a complicated way), what can we really say about it's trajectory?

Center of Mass

- There is one special location in every object that provides us with the basis for our earlier model of a point particle
- That special location is called the center of mass
- The center of mass will follow a parabolic trajectory - even if the rest of the bat's motion is very complicated

System of Particles: Center of Mass

The center of mass is where the system is balanced!

- To start, let's suppose that we have two masses m_{1} and m_{2}, separated by some distance d
- We have also arbitrarily aligned the origin of our coordinate system to be the center of mass m_{1}
- We define the center of mass for these two particles to be:

$$
x_{\mathrm{cm}}=\frac{m_{2}}{m_{1}+m_{2}} d
$$

- From this we can see that if $m_{2}=0$, then $x_{\mathrm{cm}}=0$
- Similarly, if $m_{1}=0$, then $x_{\mathrm{cm}}=d$

$$
x_{\mathrm{cm}}=\frac{m_{2}}{m_{1}+m_{2}} d
$$

Finally, if $m_{1}=m_{2}$, then $x_{\mathrm{cm}}=1 / 2 d$
So we can see that the center of mass in this case is constrained to be somewhere between $x=0$ and $x=d$

- Now lets shift the origin of the coordinate system a little
- We now need a more general
 definition of the center of mass

$$
x_{\mathrm{cm}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

- Note that if $x_{1}=0$ we are back to the previous equation
- Now let's suppose that we have lots of particles - all lined up nicely for us on the x axis
- The equation would now be:

$$
\begin{gathered}
x_{\mathrm{cm}}=\frac{m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{n} x_{n}}{M} \\
\text { where } M=m_{1}+m_{2}+\ldots+m_{\mathrm{n}}
\end{gathered}
$$

The collection of terms in the numerator can be rewritten as a sum resulting in:

$$
x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}
$$

This result is only for one dimension however, so the more generalized result for $\mathbf{3}$ dimensions is shown here:

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i} \\
& y_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i} \\
& z_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}
\end{aligned}
$$

 هركز جرم (ين مجموعه را بـبست أوريد.

$$
\begin{aligned}
& x_{c m}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}= \\
& \frac{(1 k g)(0)+(2 k g)(140 \mathrm{~cm})+(3 \mathrm{~kg})(70 \mathrm{~cm})}{(1+2+3) \mathrm{kg}}=81.7 \mathrm{~cm}
\end{aligned}
$$

$=\frac{(1 \mathrm{~kg})(0)+(2 \mathrm{~kg})(0)+(3 \mathrm{~kg})(120)}{(1+2+3) \mathrm{kg}}=60 \mathrm{~cm}$

- Noticing that x_{cm} and x_{i}, etc. are distances along the main axis of our coordinate system, we could just as easily switch to vector notation
- First recall that the position of mass m_{i} using vector notion would be:

$$
\vec{r}_{i}=x_{i} \hat{i}+y_{i} \hat{j}+z_{i} \hat{k}
$$

- Our center of mass equation using vector notation would therefore be:

$$
\vec{r}_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}
$$

$$
\begin{aligned}
& \vec{r}_{\mathrm{cm}}=\frac{1}{M}\left(m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\ldots+m_{n} \vec{r}_{n}\right)=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i} \\
& v_{c m}=\frac{d \vec{r}_{c m}}{d t}=\frac{1}{M}\left(m_{1} \frac{d \vec{r}_{1}}{d t}+m_{2} \frac{d \vec{r}_{2}}{d t}+\ldots+m_{n} \frac{d \vec{r}_{n}}{d t}\right) \\
& \vec{v}_{c m}=\frac{1}{M}\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\ldots+m_{n} \vec{v}_{n}\right)=\frac{1}{M} \sum m_{i} \vec{v}_{i} \\
& a_{c m}=\frac{d \vec{v}_{c m}}{d t}=\frac{1}{M}\left(m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+\ldots+m_{n} \vec{a}_{n}\right)=\frac{1}{M} \sum m_{i} \vec{a}_{i} \\
& M \vec{a}_{c m}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+\ldots+m_{n} \vec{a}_{n} \\
& M \vec{a}_{c m}=\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}
\end{aligned}
$$

$\sum \vec{F}_{e v}=M \vec{a}_{c n}$

$$
\left\{\begin{array}{l}
\sum F_{e x, x}=M a_{o m, x} \\
\sum F_{e a, y}=M a_{o m, y} \\
\sum F_{e v, z}=M a_{o m, z}
\end{array}\right.
$$

- Remember that the CM is a point that acts as though all of the mass in the system were located there
- So even though we may have a large number of particles - possibly of different masses, we can treat the assembly as having all of it's mass at the point of it's CM
- So we can assign that point a position, a velocity and an acceleration
- $\sum F_{\text {net }}$ is the net of all of the external forces acting upon our system of particles; internal forces are not included (as they generally have no net effect)
- M is the total mass of the system (and is assumed to be constant)
- a_{cm} is the acceleration of the center of mass; we can't say anything about what the acceleration might be of any other part of the system
- Note however that the center of mass doesn't necessarily have to lie within the object or have any mass at that point:
- The CM of a horseshoe is somewhere in the middle along the axis of symmetry.
- The CM of a doughnut is at it's 'geographic' center, but there is no mass there either

Center of Mass

- Going back to our baseball bat, the CM will lie along the central axis (the axis of symmetry)
- And it is the CM that faithfully follows the line of a parabola

Earth

the center of mass of the Earth-moon system is about 1600 km below the surface of the Earth.

- When a fireworks rocket explodes, the CM of the system does not change; while the fragments all fan out, their CM continues to move along the original path of the rocket

- What is the acceleration of the CM and in what direction does it move?

- Solve for the net force; then use $\sum F_{\text {net }}=M a_{\text {com }}$
- Assume that all of the mass is concentrated at the CM ;

$$
\text { e.g., } M=m_{1}+m_{2}+m_{3}
$$

$$
\begin{aligned}
& x_{c m}=\frac{1}{M}\left(m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}\right) \\
& =\frac{1}{16 k g}[(4 k g)(-2 \mathrm{~cm})+(8 k g)(4 \mathrm{~cm})+(4 k g)(1 \mathrm{~cm})]=1.75 \mathrm{~cm}
\end{aligned}
$$

$$
y_{c m}=\frac{1}{M}\left(m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}\right)
$$

$$
=\frac{1}{16 k g}[(4 k g)(3 \mathrm{~cm})+(8 k g)(2 \mathrm{~cm})+(4 k g)(-2 \mathrm{~cm})]=1.25 \mathrm{~cm}
$$

$F_{e x t, x}=F_{1 x}+F_{2 x}+F_{3 x}$

$=-6 N+(12 N)\left(\cos 45^{0}\right)+14 N=16.5 N$

$$
\begin{aligned}
& F_{e x t, y}=F_{1 y}+F_{2 y}+F_{3 y} \\
& =0+(12 N)\left(\sin 45^{0}\right)+0=8.5 N
\end{aligned}
$$

$$
F_{n e t}=\sqrt{\left(F_{e x, x}\right)^{2}+\left(F_{e x, y}\right)^{2}}=\sqrt{(16.5 \mathrm{~N})^{2}+(8.5 \mathrm{~N})^{2}}=18.6 \mathrm{~N}
$$

$$
\phi=\tan ^{-1} \frac{F_{e x, y}}{F_{e x t, x}}=\tan ^{-1} \frac{8.5 \mathrm{~N}}{16.5 \mathrm{~N}}=27^{0}
$$

$$
a_{c m}=\frac{F_{e x t}}{M}=\frac{18.6 \mathrm{~N}}{16.4 \mathrm{~kg}}=1.1 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& x_{c m}=-\frac{m_{1}}{M}(L-y), \quad y_{c m}=\frac{m_{2}}{M} y \\
& v_{c m, x}=\frac{m_{1}}{M} v, \quad v_{c m, y}=\frac{m_{2}}{M} v \\
& a_{c m, x}=\frac{m_{1}}{M} a, \quad a_{c m, y}=\frac{m_{2}}{M} a
\end{aligned}
$$

x component $\quad T=M a_{c m, x}$
y component $: m_{1} g-N+m_{2} g-T=M a_{c m, y}$
$m_{1} g=N$
$a=\frac{m_{2}}{M} g$

هركز جرم (جسام صطب

- As the number of particles gets to be large (as it would be for everyday objects like a baseball bat or a fighter jet), the easiest thing to do is to treat the object as a continuous distribution of matter
- The 'particles' then become differential mass elements and the sums become integrals

This result is only for one dimension however, so the more generalized result for $\mathbf{3}$ dimensions is shown here:

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i} \\
& y_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i} \\
& z_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}
\end{aligned}
$$

هركز جرم اجسام صلب

Given continuous matter, the location of the center of mass becomes:

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{1}{M} \lim _{\delta m \rightarrow 0} \sum x_{n} \delta m_{n}=\frac{1}{M} \int x d m \\
& y_{\mathrm{cm}}=\frac{1}{M} \int y d m \\
& z_{\mathrm{cm}}=\frac{1}{M} \int z d m \\
& \vec{r}_{c m}=\frac{1}{M} \int \vec{r} d m
\end{aligned}
$$

Moving over to the integral form is nice, but now the problem is one of dealing with the non-uniformity of mass distribution in our everyday objects
For this course, we will assume uniform objects - objects with a uniform density

$$
\begin{aligned}
& \rho=\frac{d m}{d V}=\frac{M}{V} \\
& d m=\frac{M}{V} d V
\end{aligned}
$$

Center of Mass

- If we now substitute for $d m$ in the previous integrals, we get:
- Now we are simply integrating over the volume of the object

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{1}{V} \int x d V \\
& y_{\mathrm{cm}}=\frac{1}{V} \int y d V \\
& z_{\mathrm{cm}}=\frac{1}{V} \int z d V
\end{aligned}
$$

$$
\begin{aligned}
& 808 \\
& 808
\end{aligned}
$$

$$
\begin{equation*}
x_{C}=\frac{m_{S} x_{S}+m_{P} x_{P}}{m_{S}+m_{P}} \tag{array}
\end{equation*}
$$ هركز جزم را هيبا كئبد.

$$
x_{C}=0 \leftarrow x_{P}=-\frac{x_{S} m_{S}}{m_{P}}
$$

$$
x_{S}=-R \rightarrow x_{P}=\frac{1}{3} R
$$

$$
\frac{m_{S}}{}=\frac{S \text { area }}{}=
$$

$$
\frac{m_{S}}{D}=\frac{S \text { area }}{D}=
$$

$$
\overline{m_{P}}=\overline{P \text { area }}=
$$

 درآورده ايم هركز جرم اين جسم را باست آوريد.
$\frac{d m}{M}=\frac{d \phi}{\pi} \rightarrow d m=(M / \pi) d \phi$ $y=R \sin \phi$

$$
\begin{gathered}
y_{c m}=\frac{1}{M} \int y d m=\frac{1}{M} \int_{0}^{\pi}(R \sin \phi) \frac{M}{\pi} d \phi \\
=\frac{R}{\pi} \int_{0}^{\pi} \sin \phi d \phi=\frac{2 R}{\pi}=0.637 R
\end{gathered}
$$

Linear Momentum

The linear momentum of a particle is a vector defined as:

$$
\vec{p}=m \vec{v}
$$

- Newton actually expressed his $2^{\text {nd }}$ law of motion in terms of momentum:
- The time rate of change of the momentum of a particle is equal to the net force acting on the particle and is in the direction of that force

$$
\vec{F}_{n e t}=\frac{d \vec{p}}{d t}
$$

Linear Momentum

- Because acceleration is the time derivative of velocity, we can also state the law as:

$$
\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=\frac{d}{d t}(m \vec{v})=m \frac{d \vec{v}}{d t}=m \vec{a}
$$

- These two ways of expressing the force on a particle are entirely equivalent

$$
\begin{aligned}
\vec{F}_{n e t} & =\frac{d \vec{p}}{d t} \\
\vec{F}_{n e t} & =m \vec{a}
\end{aligned}
$$

$$
\begin{gathered}
K=\frac{1}{2} m v^{2} \quad, \quad P=m v \\
K=\frac{P^{2}}{2 m}
\end{gathered}
$$

Linear Momentum of a System of Particles

- Now suppose that we have a system of n particles, each with their own mass and velocity - and therefore momentum.
- The particles may interact with each other and there may be external forces acting on the system (e.g., the collection of particles)
- The system as a whole has a total linear momentum which is defined to be the vector sum of the momenta of the individual particles, thus:

$$
\begin{gathered}
\vec{P}=\vec{p}_{1}+\vec{p}_{2}+\ldots+\vec{p}_{\mathrm{n}} \\
\vec{P}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\ldots+m_{n} \vec{v}_{\mathrm{n}} \\
\vec{v}_{c m}=\frac{1}{M}\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\ldots+m_{n} \vec{v}_{n}\right)=\frac{1}{M} \sum m_{i} \vec{v}_{i} \\
\vec{P}=M \vec{v}_{\mathrm{cm}}
\end{gathered}
$$

$$
\vec{P}=M \vec{v}_{\mathrm{cm}}
$$

- where $M=$ the total mass and $v_{\text {com }}$ is the velocity of the center of mass.
- The linear momentum of a system of particles is equal to the product of the total mass M of the system and the velocity of the center of mass.

If we take the time derivative of the previous equation, we get:

$$
\frac{d \vec{P}}{d t}=M \frac{d \vec{v}_{\mathrm{cm}}}{d t}=M \vec{a}_{\mathrm{cm}}
$$

which of course leads us straight to:

$$
\sum \vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t}
$$

Conservation of Linear Momentum

- Suppose we have a system that has no external forces acting upon it (the system is isolated) and no particles enter or leave the system (the system is closed)
- We then know that $\sum F_{\text {net }}=0$ which in turn means that $d P / d t=0$, or that:
$P=$ constant (in a closed, isolated system)
- In other words:
- If no net force acts upon a system of particles, the total linear momentum $\sum P$ of the system cannot change
- This very important result is called the law of conservation of linear momentum
- It can also be written as: $\sum P_{\mathrm{i}}=\sum P_{\mathrm{f}}$
- Because these are vector equations, we can derive a little more insight if we further examine what they mean along each dimension:
- If the component of a net external force on a closed system is zero along an axis, then the component of the linear momentum of the system along that axis cannot change

$$
\begin{aligned}
& P_{i}=N(m v) \\
P_{f} & =(M+N m) V \\
P_{i} & =P_{f} \rightarrow N(m v)=(M+N m) V \\
V & =\frac{N m}{M+N m} v=2.8 m / s
\end{aligned}
$$

$$
\begin{aligned}
& P_{i}=0 \\
& P_{f}=M V+m(v+V) \\
& P_{i}=P_{f} \\
& 0=M V+m(v+V)
\end{aligned}
$$

$$
V=-\frac{m v}{M+m}=-\frac{(72 k g)(55 \mathrm{~m} / \mathrm{s})}{1300 \mathrm{~kg}+72 \mathrm{~kg}}=-2.9 \mathrm{~m} / \mathrm{s}
$$

$$
v_{E}=v+V=55 \mathrm{~m} / \mathrm{s}+(-2.9 \mathrm{~m} / \mathrm{s})=52 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& P_{i}=0 \\
& P_{f}=m_{1} v_{1}+m_{2} v_{2} \\
& 0=m_{1} v_{1}+m_{2} v_{2} \quad f 1=\frac{K_{1}}{K_{1}+K_{2}}=\frac{\frac{1}{2} m_{1} v_{1}{ }^{2}}{\frac{1}{2} m_{1} v_{1}{ }^{2}+\frac{1}{2} m_{2} v_{2}{ }^{2}} \\
& \frac{v_{1}}{v_{2}}=-\frac{m_{2}}{m_{1}} \\
& K_{1}=\frac{1}{2} m_{1} v_{1}{ }^{2}, \mathrm{~K}_{2}=\frac{1}{2} m_{2} v_{2}{ }^{2} \quad f_{1}=\frac{m_{2}}{m_{1}+m_{2}} \quad f_{2}=\frac{m_{1}}{m_{1}+m_{2}} \\
& \quad \text { if } m_{2}=10 m_{1}, f 1=0.91, f 2=0.09
\end{aligned}
$$

- A space hauler with an initial velocity $v_{\mathrm{i}}=\mathbf{2 1 0 0} \mathbf{~ k m} / \mathrm{hr}$ separates from it's cargo container
- The cargo module has a mass of $0.2 M$ where M is the initial mass of the hauler plus cargo module
- After separation, the hauler has a velocity of $\mathbf{+ 5 0 0} \mathbf{~ k m} / \mathrm{hr}$ relative to the cargo module
- What is the velocity of the hauler relative to the sun?

- We will assume that the system consists of the hauler \& cargo module - and is closed
- Because it is closed, we know that conservation of momentum will hold and that $\sum P_{i}=\sum P_{f}$

$$
P_{i}=M v_{i}
$$

where $v i$ is the velocity of the combined hauler $\&$ module relative to the sun

Let $v_{M S}$ and $v_{H S}$ be the velocities of the ejected cargo module and the hauler respectively, relative to the sun

- After the cargo module has been ejected, the total linear momentum of the system is:

$$
P_{f}=(0.20 M) v_{M S}+(0.80 M) v_{H S}
$$

- We don't know what $v_{M S}$ is, but we can relate it to other factors as follows:

$$
\begin{aligned}
& v_{H S}=v_{r e l}+v_{M S} \\
& v_{M S}=v_{H S}-v_{r e l}
\end{aligned}
$$

We can now substitute $v_{M S}$ back into our equation for the final linear momentum:

$$
P_{f}=0.20 M\left(v_{H S}-v_{r e l}\right)+0.80 M v_{H S}
$$

Rearranging a little gives us:

$$
\begin{aligned}
& M v_{i}=M\left(v_{H S}-0.20 M v_{r e l}\right) \\
& v_{H S}=v_{i}+0.20 v_{r e l}
\end{aligned}
$$

Finally, we can substitute in the known values and solve for $v_{H S}$ to get:

$$
\begin{aligned}
& v_{H S}=2100 \mathrm{~km} / \mathrm{hr}+(0.20)(500 \mathrm{~km} / \mathrm{hr}) \\
& v_{H S}=2200 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

