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Review of Lecture 18

• Potential Energy

– Work and Potential Energy

– Conservative & Nonconservative Forces

• Path Independence of Conservative Forces

• Determining Potential Energy Values

– Gravitational PE

– Elastic PE

• Conservation of Mechanical Energy



Review of Lecture 18

• Reading a Potential Energy Curve

– Turning points & Equilibrium points

• Work Done on a System by an External Force

– With & Without Friction

• Conservation of Energy



Systems of Particles

• We have discussed parabolic trajectories using a 

“particle” as the model for our objects

• But clearly objects are not particles – they are 

extended and may have complicated shapes & 

mass distributions

• So if we toss something like a baseball bat into the 

air (spinning and rotating in a complicated way), 

what can we really say about it’s trajectory?



Center of Mass

• There is one special location in every object 
that provides us with the basis for our 
earlier model of a point particle

• That special location is called the center of 
mass

• The center of mass will follow a parabolic 
trajectory – even if the rest of the bat’s 
motion is very complicated



System of Particles: Center of Mass

The center of mass is where the system is balanced!
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• To start, let’s suppose that we have two 

masses m1 and m2, separated by some 

distance d

• We have also arbitrarily aligned the origin 

of our coordinate system to be the center of 

mass m1

• We define the center of mass for these two 

particles to be:
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• From this we can see that if m2 = 0, then xcm = 0

• Similarly, if m1 = 0, then xcm = d

Finally, if m1 = m2, then   xcm = ½d

So we can see that the center of mass in this case is 

constrained to be somewhere between x = 0 and x = d
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• Now lets shift the 

origin of the 

coordinate system a 

little

• We now need a 

more general 

definition of the 

center of mass

• Note that if x1 = 0 we are back to the previous equation
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• Now let’s suppose that we have lots of 

particles – all lined up nicely for us on the x 

axis

• The equation would now be:

where M = m1 + m2 + … + mn
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The collection of terms in the 

numerator can be rewritten 

as a sum resulting in:
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This result is only for one dimension however, so the 

more generalized result for 3 dimensions is shown 

here:
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. در رئوس یک مثلث قرار دارندm3=3kgو m2=2kgو m1=1kgسه ذره به جرمهای : مثال

.مرکز جرم این مجموعه را بدست آورید



• Noticing that xcm and xi, etc. are distances along 

the main axis of our coordinate system, we 

could just as easily switch to vector notation

• First recall that the position of mass mi using 

vector notion would be:
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• Our center of mass equation using vector 

notation would therefore be:
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• Remember that the CM is a point that acts as 

though all of the mass in the system were located 

there

• So even though we may have a large number of 

particles – possibly of different masses, we can 

treat the assembly as having all of it’s mass at the 

point of it’s CM

• So we can assign that point a position, a velocity 

and an acceleration



• ∑Fnet is the net of all of the external forces acting 

upon our system of particles; internal forces are not 

included (as they generally have no net effect)

• M is the total mass of the system (and is assumed to 

be constant)

• acm is the acceleration of the center of mass; we 

can’t say anything about what the acceleration might 

be of any other part of the system



• Note however that the center of mass doesn’t 

necessarily have to lie within the object or have 

any mass at that point:

– The CM of a horseshoe is somewhere in the middle 

along the axis of symmetry.

– The CM of a doughnut is at it’s ‘geographic’ center, 

but there is no mass there either



Center of Mass

• Going back to our 

baseball bat, the CM 

will lie along the 

central axis (the axis of 

symmetry)

• And it is the CM that 

faithfully follows the 

line of a parabola
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the center of mass of the Earth-moon system is about 1600 km below the surface 

of the Earth. 

http://en.wikipedia.org/wiki/Image:Orbit3.gif


• When a fireworks rocket explodes, the CM 

of the system does not change; while the 

fragments all fan out, their CM continues to 

move along the original path of the rocket



• What is the acceleration of the CM and in 

what direction does it move?

• Solve for the net force; then 

use ∑Fnet =Macom

• Assume that all of the mass 

is concentrated at the CM; 

e.g., M = m1 + m2 + m3
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.دبا در نظر گرفتن مرکز جرم سیستم دو ذره ای شتاب مشترک آنها را بدست آوری:مثال
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• As the number of particles gets to be large 

(as it would be for everyday objects like a 

baseball bat or a fighter jet), the easiest 

thing to do is to treat the object as a 

continuous distribution of matter

• The ‘particles’ then become differential 

mass elements and the sums become 

integrals

مرکز جرم اجسام صلب



This result is only for one dimension however, so the 

more generalized result for 3 dimensions is shown 

here:
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مرکز جرم اجسام صلب

Given continuous matter, the location of the center of 
mass becomes:
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Moving over to the integral form is nice, but 

now the problem is one of dealing with the 

non-uniformity of mass distribution in our 

everyday objects

For this course, we will assume uniform

objects – objects with a uniform density
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Center of Mass

• If we now substitute 

for dm in the 

previous integrals, 

we get:

• Now we are simply 

integrating over the 

volume of the object 
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http://www.fas.harvard.edu/~scidemos/NewtonianMechanics/CenterofMass/CenterofMass04.jpg


محل دقیق .درآورده شده استRکه از آن قرصی به شعاع 2Rیک ورقه فلزی دایره ای به شعاع : مثال

.مرکز جرم را پیدا کنید
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Rنوار نازکی را به صورت نیمدایره ای به شعاع : مثال

.درآورده ایم مرکز جرم این جسم را بدست آورید
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Linear Momentum

The linear momentum of a particle is a vector 

defined as:
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• Newton actually expressed his 2nd law of motion in 

terms of momentum:

– The time rate of change of the momentum of a 

particle is equal to the net force acting on the 

particle and is in the direction of that force
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Linear Momentum

• Because acceleration is the time derivative 

of velocity, we can also state the law as:
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• These two ways of expressing the force on a 

particle are entirely equivalent
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Linear Momentum of a System of Particles

• Now suppose that we have a system of n

particles, each with their own mass and 

velocity – and therefore momentum.

• The particles may interact with each other 

and there may be external forces acting on 

the system (e.g., the collection of particles)



• The system as a whole has a total linear 

momentum which is defined to be the 

vector sum of the momenta of the individual 

particles, thus:
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• where M = the total mass and vcom is the 

velocity of the center of mass.

• The linear momentum of a system of 

particles is equal to the product of the total 

mass M of the system and the velocity of the 

center of mass.
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If we take the time derivative of the previous 

equation, we get:

which of course leads us straight to:
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Conservation of Linear Momentum

• Suppose we have a system that has no 

external forces acting upon it (the system is 

isolated) and no particles enter or leave the 

system (the system is closed)

• We then know that ∑Fnet = 0 which in turn 

means that dP/dt = 0, or that:

P = constant (in a closed, isolated system)



• In other words:

– If no net force acts upon a system of particles, 

the total linear momentum ∑P of the system 

cannot change

• This very important result is called the law 

of conservation of linear momentum

• It can also be written as:  ∑ Pi = ∑Pf



• Because these are vector equations, we can 

derive a little more insight if we further 

examine what they mean along each 

dimension:

– If the component of a net external force on a 

closed system is zero along an axis, then the 

component of the linear momentum of the 

system along that axis cannot change



به قطعه چوب 1100m/sبه طور افقی با سرعت  m=3.8gرگباری از گلوله هایی به جرم : مثال

ه اگر قطع. که در ابتدا روی سطح میزی افقی ساکن است، شلیک می شود M=12kgبزرگی به جرم 

گلوله چقدر است؟8چوب بتواند بدون اصطکاک روی سطح میز بلغزد سرعت آن پس از دریافت 
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شلیک می v=55m/sکیلوگرمی را در راستای افقی با سرعت 72گلوله ای  Mتوپی به جرم :مثال
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کاکی دو جسم را که توسط فنری به هم متصل شده اند می توانند آزادانه روی سطح افقی بدون اصط: مثال

است از هم دیگردور می کنیم و سپس از حال سکون رها m2و m1دو جسم را که جرم آنها برابر .بلغزند

ود؟در زمانهای بعدی هر کدام از دو جسم حامل چه کسری از انرژی جنبسی کل سیستم خواهند ب. می کنیم

2211

0

vmvmP

P

f

i





22110 vmvm 

1

2

2

1

m

m

v

v


2

222

2

111
2

1
K    ,      

2

1
vmvmK 

2

22

2

11

2

11

21

1

2

1

2

1
2

1

1

vmvm

vm

KK

K
f








21

2
1

mm

m
f




21

1
2

mm

m
f




0902  ,  9101  ,  10  12 .f.fmmif 



• A space hauler with an initial velocity vi = 2100 km/hr 
separates from it’s cargo container

• The cargo module has a mass of 0.2M where M is the initial 
mass of the hauler plus cargo module

• After separation, the hauler has a velocity of +500 km/hr 
relative to the cargo module

• What is the velocity of the hauler relative to the sun?



• We will assume that the system consists of 

the hauler & cargo module – and is closed

• Because it is closed, we know that 

conservation of momentum will hold and 

that ∑Pi = ∑Pf

ii MvP 

where vi is the velocity of the combined hauler & module 

relative to the sun

Let vMS and vHS be the velocities of the ejected cargo 

module and the hauler respectively, relative to the sun



• After the cargo module has been ejected, the total 

linear momentum of the system is:

• We don’t know what vMS is, but we can relate it to 

other factors as follows:
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We can now substitute vMS back into our 

equation for the final linear momentum:

Rearranging a little gives us:
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Finally, we can substitute in the known values and 

solve for vHS to get:

  

km/hr 2200

km/hr 5000.20km/hr 2100





HS

HS

v

v



از توجه 

شما 

متشکرم


