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Review of Previous Lecture 

Energy

Work

Work & Kinetic Energy

Work Done by a Gravitational Force

Work Done by a Spring Force

Work – Energy Theorem

Power



Types of Forces

There are two general kinds of forces

Conservative

Nonconservative



A force is conservative if the work it does on a particle that 

moves through a round trip is zero; otherwise the force is non-

conservative

Conservative Forces

work done by gravity for round trip:

On way up: work done by gravity = -mgh

On way down: work done by gravity =  mgh

Total work done =   0

Sometimes written as   0ds.F

h
-g

Consider throwing a mass up a height h



Conservative Forces



Conservative Forces

-g

Each step 

height=Dh

= -mg(Dh1+Dh2+Dh3 +……)

= -mgh

Same as direct path (-mgh)

Work done by gravity

w = -mgDh1+ -mgDh2+-mgDh3+…

h

A force is conservative if the work done by it on a particle that 

moves between two points is the same for all paths connecting 

these points: otherwise the force is non-conservative.
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Friction Depends on the Path

The blue path is 

shorter than the red 

path

The work required is 

less on the blue path 

than on the red path

Friction depends on 

the path and so is a 

non-conservative 

force



Conservative and Nonconservative Forces

We know that as we slide a block along the floor, 
the floor and the block have friction

The kinetic frictional force does negative work on 
the block (slowing it down) - this negative work is 
transferred into heat (thermal energy)

We also know that this energy transfer can’t be 
reserved (e.g., warming up the floor-block 
interface won’t cause the block to start moving)

From this we can conclude that thermal energy 
(heat) is not a potential energy



Non-conservative forces

When moving a mass in a gravitational field, the 

amount of work done by gravity is independent of the 

path taken.

The same is not true of friction as it always opposes 

the direction of motion.

Whereas gravity can do positive and negative work 

on an object, friction only does negative.



Path Independence of Conservative Forces

But we also know that – if the 
force is conservative – the work 
done in getting from a to b
along path 2 must be the 
negative of the work done in 
getting from b to a along path 2; 
thus Wab,2 = -Wba,2

If the force is conservative, then 

Wab,1 + Wba,2 = 0  and thus Wab,1 = -Wba,2

we then get: Wab,1 = Wab,2



Sample Problem 8-1

A 2.0 kg block of slippery 

cheese slides along a 

frictionless track from point a

to point b

The total distance traveled 

along the track is 2.0 m and 

the net vertical drop is 0.80 m

How much work is done on 

the cheese by the gravitational 

force during the trip?



We know that the total work 

done is the same regardless of 

the path – so let’s pick an 

alternative path that allows us 

an easy solution to the 

problem

We can do this because the 

only force we are dealing with 

here is the force of gravity –

and we know that the 

gravitational force is 

conservative



First look at the horizontal segment of the path

The work done is:

090cosh  mgdW

Now let’s look at the vertical 

segment of the path

The work done is:
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Potential Energy

Last week we defined something called kinetic 

energy – the energy associated with the motion 

of an object

We will now define a 2nd kind of energy called 

potential energy

This is the energy associated with a change in 

the configuration of a system

OK – but what the heck does that mean???



Work and Potential Energy

when we threw the tomato up 

we noted that negative work 

was being done on the 

tomato which caused it to 

slow down during it’s ascent

As a result, the kinetic energy 

of the tomato was reduced –

eventually to zero

Where it went was into an increase in 

the gravitational potential energy of the tomato



Work and Potential Energy

From this we can see that for either the rise or 

fall of the tomato, the change ΔU in the 

gravitational potential energy is the negative of 

the work done on the tomato by the 

gravitational force

In equation form we get:

WU D



Determining Potential Energy Values

In the general case, we can relate the work done 

on an object as:

Substituting in our earlier relationship for work 

and potential energy we get:
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Gravitational Potential Energy

Let’s imagine a particle moving along the y

axis (positive upwards) from point yi to 

point yf

As the particle moves, the gravitational 

force F does work on it; we therefore get:

  D
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Carrying the integral on we get:

which yields:
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Gravitational Potential Energy

If we let the initial value of y = 0, then we 
finally get:

This equation tells us that:

The gravitational energy associated with a particle-
earth system depends only on the vertical position 
y (or height) of the particle relative to the 
reference position (y = 0)

mgyU D



Elastic Potential Energy

Now let’s do the same analysis for a

spring-block system (where the spring has a 

spring constant k)

As the block moves from point xi to point xf, 

the spring force F = -kx does work on the 

block



Elastic Potential Energy

Substituting in –kx for the force in our earlier 

equation we get:
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Elastic Potential Energy

Which finally results in:

Again, if we let xi = 0, we get:
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Conservative and Non-conservative Forces

Conservative force is one for which the work done does 

not depend on the path.

Gravitational force: mechanical work against it depends

just on difference in elevation not how an object is

lifted.

Elastic force: work against spring only depends on

length change.



Conservation of Mechanical Energy

The mechanical energy of a system is simply the 

sum of its potential energy and the kinetic energy 

of the objects within it:

For the moment, we will assume that all of the 

forces acting on the system are conservative – in 

other words, there are no frictional or drag forces 

present

UKE mch



Conservation of Mechanical Energy

We will also assume that the system is isolated

– meaning that there are no external forces 

acting on it.

We know that when conservative forces do 

work they act to transfer energy between the 

kinetic energy of objects in the system and the 

potential energy of the system



Conservation of Mechanical Energy

We know that the change in kinetic energy is:

We also know that the change in potential 

energy is:

WK D

WU D



Conservation of Mechanical Energy

We can therefore combine these two equations 

to get:

which tells us that, in an isolated system with 

conservative forces, the kinetic energy 

increases exactly as much as the potential 

energy decreases

UK DD



Written a little differently, we have:

which can be rearranged to be:

where the subscripts indicate two different 

states of the system
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But we said from the outset that the sum of the 

kinetic and potential energies was defined to be 

the mechanical energy of the system:

So we can now see that, for an isolated system with 

only conservative forces, the mechanical energy of 

the system cannot change

UKE 



Or said slightly differently – In an isolated 

system where only conservative forces cause 

change, the kinetic and potential energies can 

change, but their sum, the mechanical energy 

of the system, cannot change

0DDD UKE



This result is called the principle of conservation of 
mechanical energy

It allows us to examine complicated systems 
without having to consider what happens at all 
times (e.g., all of the intermediate states) and 
without having to consider the work done by the 
force(s) involved

0DDD UKE



Conservation of Mechanical Energy

A great illustration of the principle of 

conservation of mechanical energy is the 

pendulum.





Suppose we knew that the kinetic 

energy at the bottom of the arc (point 

a in Fig was 20 J

Then without any further work 

we would also know that the 

potential energy at the top of the 

arc (point c in Fig) is also 20 J



Potential-energy diagrams

The force is the negative gradient 

of the PE curve

If we know how the PE varies with position, we can find 

the conservative force as a function of position
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Spring Force
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Energy

x

U= ½ kx2
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PE of a spring

here U = ½ kx2



Energy

x

Potential energy 

U= ½ kx2

U= ½ kA2

x=A

KE

PE

At any position x

PE + KE = E

U + K = E

K = E - U

= ½ kA2 – ½ kx2

= ½ k(A2 -x2)

x’

Total mech. energy

E= ½ kA2


