General Meteorology

Lecture 7

Sahraeí

Razi University

Departu

http://www.razi.ac.ir/sahraei

1

Water Vapor and its thermodynamic effects

Our atmosphere contains dry air and water vapor Clouds contain dry air, water vapor, liquid water, and ice Water In the Atmosphere

Unique Substance

Occurs in Three Phases Under Normal Atmospheric Pressures and Temperatures Gaseous State

Variable 0 - 4%

System: Any specific sample of matter (Examples: an "air parcel" or the air within a balloon)

- Thus far we have worked exclusively dry air only closed system (no mass exchange, but some energy exchange)
- What about water vapor?
- What about the combination of dry air and water vapor?
- What about the combination of dry air, water vapor, and liquid/ice water?

$$p\alpha = R_{d}T$$
$$dq = c_{v}dT + pd \alpha$$

$$ds = \frac{dq_{rev}}{T}$$

Review of Systems

Heterogeneous Systems:

• Comprised of a single component in multiple phases or multiple components in multiple phases

- Water (vapor, liquid, ice)
- Each component or phase <u>must</u> be defined by its own set of state variables

Thermodynamic Properties of Water

Single Gas Phase (Water Vapor):

• Can be treated like an ideal gas when it exists in the absence of liquid water or ice (i.e. like a homogeneous closed system):

$$p_{v} = \rho_{v} R_{v} T_{v} \qquad e \alpha_{v} = R_{v} T_{v}$$

$$R_{v} = \frac{R^{*}}{M} = \frac{8314}{18} = 461.5 \ Jkg^{-1}k^{-1}$$

p_v = Partial pressure of water vapor (called **vapor pressure**)

ρ_v = Density of water vapor (or vapor density) (The mass of the H₂O molecules) (per unit volume)

- T_v = Temperature of the water vapor
- R_v = Gas constant for water vapor (Based on the mean molecular weights) (of the constituents in water vapor

 $dq = c_v dT + pd \alpha$

$$ds = \frac{dq_{rev}}{T}$$

Thermodynamic Properties of Water

Multiple Phases:

 Can NOT be treated like an ideal gas when water vapor <u>co-exists</u> with either liquid water, ice, or both:

$$p_{v} = \rho R T_{v} \qquad p_{w} = \rho_{w} R T_{w}$$

- This is because the two sub-systems can exchange mass between each other when an equilibrium exists
- This violates the Ideal Gas Law

Water in Equilibrium

Multiple Phases:

• When an equilibrium exists, the thermodynamic properties of each phase are equal:

Vapor and Liquid pv, Tv

$$p_v = p_w$$

$$T_{v} \equiv T_{v}$$

Vapor and Ice

 $p_v = p_i$ $T_v = T_i$

Review of Systems

 Our atmosphere is a heterogeneous closed system consisting of multiple sub-systems

• For now, let's focus our attention on the one component heterogeneous system "water" comprised of vapor and <u>one</u> other phase (liquid or ice)

> Dry Air (gas)

 $\mathbf{p}, \mathbf{T}, \mathbf{V}, \mathbf{m}_{\mathrm{d}}, \mathbf{R}_{\mathrm{d}}$

Closed sub-system

Liquid Water p_w, T_w, V_w, m_w Open sub-system

Water Vapor

p_v, T_v, V_v, m_v, R_v Open sub-system

> Ice Water p_i, T_i, V_i, m_i Open sub-system

Energy Exchange Mass Exchange

سه حالت آب

هرگاه بخار آب از حالت میعان یا تبلور دور باشد مثلا در شرف تبدیل به آب یا یخ نباشد تقریبا مانند گاز ایده آل رفتار می کند

Phase Change (p- α Diagram)

- Triple Line
 T = 273.16K
 p = 6.11 mb
- Critical Point
 - T = 374 °C
 - p = 221000 mb

Water vapor obeys the Ideal Gas Law at higher temperatures

Amagat-Andrews Diagram

Equilibrium Phase Changes on P-V Diagrams:

Latent Heats during Phase Changes

Ρ

Liquid and Vapor

Isobaric Process

- Heat (dQ) added or removed from the system
- Temperature constant
- Volume changes

 Heat absorbed (or given away) during an isobaric and isothermal phase change

$$L = dQ$$

Definition of Latent Heat (L):

- Heat absorbed (or given away) during an isobaric and isothermal (phase change
- Magnitude varies with temperature
- However, the range of variation is very small for the range of pressures and temperatures observed in the troposphere
- Assumed constant in practice

L = dQ = constant

Phase Changes of Water- Latent Heat

Heat Energy Absorbed

