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Reynolds Averaging 

In a turbulent fluid, a field variable such as velocity measured at a 
point generally fluctuates rapidly in time as eddies of various scales 
pass the point.  
 
In order that measurements be truly representative of the large-
scale flow, it is necessary to average the flow over an interval of time 
long enough to average out small-scale eddy fluctuations, but still 
short enough to preserve the trends in the large-scale flow field.  
 

To do this we assume that the field variables can be separated into 
slowly varying mean fields and rapidly varying turbulent components. 

Time 

u 

 tuuu '
 tu'

u



 itself may vary slowly with time as the following figure    u



1 o

o

t T

t

u udt
T



 

Following the scheme introduced by Reynolds, we then assume that 
for any field variables, w and θ ,  
 
for example, the corresponding means are indicated by overbars and 
the fluctuating components by primes.  
 

By definition, the means of the fluctuating components vanish; the 
product of a deviation with a mean also vanishes when the time 
average is applied. Thus, 
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These equations illustrate how the slowly varying velocities,      and  u v

depend on the average of the product he average of the product 
 
of the deviation components, i.e.,                     ,etc. which are the  
 
turbulent fluctuations or covariances, and represent eddy stresses.  
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If for example, on average the turbulent vertical velocity is 
upward (downward) where the potential temperature deviation is 
positive (negative), the product         is positive and the variables 
are said to be positively correlated. 
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we rewrite the total derivative in each equation in flux form.  
We combine the horizontal momentum equations 

with the continuity equation 

to get the flux form of the momentum equations: 



If we separate each dependent variable into mean and fluctuating parts 

where it is assumed that ρ΄= 0, so that ρ = ρˉ, and then time average 
the flux forms of the momentum equation, we get 



where the eddy is a primed (΄) quantity, the stress is a sheared 
quantity. If you have trouble understanding “flux”, then look at the 
units of flux; 

or the amount of mass flowing through a square area in some unit of time. 

There are other ways of determining the flux form of the governing 
equations. For example, the term 
on the left in (5.1) can be manipulated with the aid of the continuity 
equation (5.5) and the chain rule of differentiation to yield 
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Separating each dependent variable into mean and fluctuating parts, 
substituting into * and averaging then yields 
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Noting that the mean velocity fields satisfy the continuity equation, 
we can rewrite 
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is the rate of change following the mean motion. The mean equations thus 
have the form 

rx

du p u u u v u w
fv F

dt x x y z
0

1



         
       

    

ry

dv p u v v v v w
fu F

dt y x y z
0

1



         
       

    

rz

dw p u w v w w w
g F

dt z x y z
0 0

1 

 

         
       

    

u v w

x y z
0

  
  

  

dd u v w
w

dt dz x y z

0
           

     
   

5 unknown mean variables,  
there are unknown turbulent fluxes 
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The various covariance terms in square brackets in equations represent 
turbulent fluxes.  

For example: w  is a vertical turbulent heat flux in kinematic form. 
 

w u u w    is a vertical turbulent flux of zonal momentum.  Similarly 

For many boundary layers the magnitudes of the turbulent flux 
divergence terms are of the same order as the other terms in equartions. 
 
In such cases, it is not possible to neglect the turbulent flux terms even 
when only the mean flow is of direct interest.  
 
Outside the boundary layer the turbulent fluxes are often sufficiently 
weak so that the terms in square brackets in equations can be neglected 
in the analysis of large-scale flows.  



PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS 

For the special case of horizontally homogeneous turbulence above 
the viscous sublayer, molecular viscosity and horizontal turbulent 
momentum flux divergence terms can be neglected. The mean flow 
horizontal momentum equations 
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In general, these equ. can only be solved for   and    if the vertical distribution  
of the turbulent momentum flux is known.   
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Because this depends on the structure of the turbulence, no general 
solution is possible. Rather, a number of approximate semiempirical 
methods are used. 

For midlatitude synoptic-scale motions, showed that to a first  
 approximation the inertial acceleration terms, the terms on the left in 
equations can be neglected compared to the Coriolis force and pressure 
gradient force terms.  
 
Outside the boundary layer, the resulting approximation is then simply 
geostrophic balance.  
 
In the boundary layer the inertial terms are still small compared to the 
Coriolis force and pressure gradient force terms, but the turbulent flux 
terms must be included.  
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Thus, to a first approximation, planetary boundary layer equations 
express a three-way balance among the Coriolis force, the pressure 
gradient force, and the turbulent momentum flux divergence: 
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Thus, knowledge of the pressure distribution at any time determines 
the geostrophic wind.  



Stress: Force per unit area (e.g. N m-2 or kg m-1 s-2) 

Reynolds stress: Stress that causes a parcel of air to deform during 
turbulent motion of air  

Deformation by vertical momentum flux  
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Stress from vertical transfer of 
turbulent u-momentum 
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zx = stress acting in x-direction, 
along a plane (x-y) normal to the 
z-direction 

Reynolds Stress 



Magnitude of Reynolds stress at ground surface  

MOMENTUM FLUXES 

Kinematic vertical turbulent momentum flux (m2 s-2)   

Friction wind speed (m s-1)   
 Scaling param. for surface-layer vert. flux of horiz. momentum 
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