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Dry adiabatic motion 

Conservation of potential temperature 

Conservation of entropy 

"isentropic" 
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Potential temperature is conserved during an adiabatic process. 

Potential temperature is not conserved when 
 

1) diabatic heating or cooling occurs or 
 

2) mixing of air parcels with different properties occurs 

An adiabatic process is isentropic, that is, a process in which entropy is 
conserved 

 
Entropy = Cp ln(θ) + constant = 0 

Examples of diabatic processes:  condensation, evaporation, sensible 
heating from surface, radiative heating, radiative cooling 





The troposphere, except in shallow, narrow, rare locations, is stable to dry processes. For 
the purpose of synoptic analysis, these areas can be ignored and potential temperature used 
as a vertical coordinate.  

Potential 
temperature 

increases 
with height 

Potential temperature as a vertical coordinate 



Isentropic Analyses are done on constant θ surfaces, rather than constant P or z 

Constant pressure surface 

Constant potential temperature surface 



Note that: 
1) isentropic surfaces slope downward toward warm air (opposite the 
slope of pressure surfaces) 
2) Isentropes slope much more steeply than pressure surfaces given 
the same thermal gradient. 

cold warm 
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The continuity equation in isentropic coordinates 

δz 

δy δx 

δx,  δy, δθ      Isentropic coordinates 
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Here the density in (x, y, ɵ) space is defined as 

  A  



( ) .( )
p p

V
t


 

  
 

  

( ) .
d p p

V
dt


 

 
  

 

( ) .( )
p p

V
t


 

  
 

  

. 0V
t





  


. 0s

s sV
t





  



The Eulerian form (fixed coordinate system) of the continuity equation  
 

The Lagrangian form (moving coordinate system) of the continuity equation, 
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ERTEL POTENTIAL VORTICITY IN ISENTROPIC COORDINATES 

We consider here a more detailed treatment of the Ertel potential 
vorticity in isentropic coordinates, including nonconservative effects 
due to sources of momentum and entropy.  

We begin with a description of the basic conservation laws in isentropic 
coordinates. 
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Equations of Motion in Isentropic Coordinates 

If the atmosphere is stably stratified so that potential temperature 

ɵ is a monotonically increasing function of height, ɵ may be used as 
an independent vertical coordinate.  

The Horizontal Momentum Equation 

ˆ
p

dV
fk V

dt
    

where      is the horizontal gradient operator applied with pressure held constant. p



The horizontal momentum equation in isentropic coordinates may be 
obtained by transforming the isobaric form 
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The Vorticity Equation in Isobaric Coordinates 
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to yield 

is the isentropic relative vorticity .̂k V    

Where       is the gradient on in isentropic surface 

The comtinuity eqation can be derived with the aid of  

pc T  and                        is the Montgomery streamfunction 

We have included a frictional term Fr on the right side, along with the diabatic  
vertical advection term. 
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The ψ and σ  fields are linked through the pressure field by the 
hydrostatic equation, which in the isentropic system takes the form 
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Where Π is called the Exner function. 
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Equations    
                          
through * form a closed set for prediction of                  and p.  
 
provided that     and        are known.       
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The Potential Vorticity Equation 
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ˆ. *k  If we take  

and rearrange the resulting terms, we obtain this isentropic vorticity 
equation: 

is the total derivative following the horizontal motion on an isentropic 
surface. 

Noting that  
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we can rewrite 
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multiplying each term in ˆ( ) ( ) . . ( )r
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and adding,  we obtain the desired conservation law: 
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is the Ertel potential vorticity 

 If the diabatic and frictional terms on the right side of equation can 
be evaluated, it is possible to determine the evolution of Π following 
the horizontal motion on an isentropic surface.  
When the diabatic and frictional terms are small, potential vorticity is 
approximately conserved following the motion on isentropic surfaces. 
 
Weather disturbances that have sharp gradients in dynamical fields, 
such as jets and fronts, are associated with large anomalies in the 
Ertel potential vorticity. 
In the upper troposphere such anomalies tend to be advected rapidly 
under nearly adiabatic conditions.  
Thus, the potential vorticity anomaly patterns are conserved materially 
on isentropic surfaces. This material conservation property makes 
potential vorticity anomalies particularly useful in identifying and 
tracing the evolution of meteorological disturbances. 
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Integral Constraints on Isentropic Vorticity 

Using the fact that any vector A satisfies the relationship 

we can rewrite * in the form  

The isentropic vorticity equation 
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This Equation expresses the remarkable fact that isentropic vorticity can only 
be changed by the divergence or convergence of the horizontal flux vector in 
brackets on the right side.  



The vorticity cannot be changed by vertical transfer across the 
isentropes.  

Furthermore, integration of this equation over the area of an isentropic  
Surface and application of the divergence theorem show that for an  
Isentropic that doesnot intersect the surface of Earth, the global  
average of     is constant. 

Furthermore, integration of      over the sphere shows that the 
global average      is exactly zero.   
  



Vorticity on such an isentrope is neither created nor destroyed, it is  
merely concentrated or diluted by horizontal fluxes along the  
isentropes. 
  
 




