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Potential Vorticity
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For a homogeneous, incompressible fluid flow
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Which states the absolute vorticity is conseved following the horizontal 
motion.
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Ertel  potential Vorticity 
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Kelvin’s Circulation Theorem 

Adiabatic flow can be described by Kelvin’s circulation theorem:

where δC is evaluated for a closed loop encompassing the area δA
on an isentropic surface. 

thus if the isentropic surface is approximately horizontal, for an 
infinitesimal parcel of air:
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Potential vorticity is conserved following adiabatic, frictionless flow8
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There are several reasons why many meteorologists think that the
consideration of IPV charts are useful.

First of all, PV is a conserved quantity in adiabatic, frictionless flow.
The conservation of potential vorticity is a powerful constraint on the
large scale motions of the atmosphere. PV centres may be identified on
a series of analyses and can be used to describe the evolution of flow
patterns during significant synoptic events such as rapid cyclogenesis,
blocking and retrogression of longwaves.
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Secondly, it is possible to deduce the T, p and wind fields from the PV

distribution if a number of assumptions are made.

For example, one assumption involves the specification of a balance condition

which relates the mass field to the motion field.

The simplest balance condition is the quasi-geostrophic approximation.
One must also specify an initial reference state and appropriate boundary
conditions.
Once this is done, however, the spatial distribution of PV then becomes a
source term in the equations, the flow field being derived entirely from this
term.
Later, an analogy will be made with static electric charge distributions and
their associated electric fields.
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Finally, certain atmospheric processes may be described in terms of
the interaction of PV anomalies with the background structure of the
atmosphere.

For example, when a strong upper-level PV anomaly moves over a low-
level baroclinic zone, cyclogenesis usually results.

There is no need to invoke secondary circulations (vertical motions)
as drivers of the development. In addition, a superposition principle
may be used to describe the interaction of PV anomalies at different
levels in the atmosphere, interactions which lead to changes in the
circulations at these levels.



Conservation of Potential Vorticity

The conservation of potential vorticity couples changes in depth,
relative vorticity, and changes in latitude. All three interact.

Changes in the depth h of the flow causes changes in the relative
vorticity. The concept is analogous with the way figure skaters
decreases their spin by extending their arms and legs.

( )( )
E

P V g f
p







  



f
c o n s t

h

z +
=

The conservation of potential vorticity is the air's equivalent of
the conservation of angular momentum.
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Isentropic Potential Vorticity

s
P V g f

p


 





0 f f  

Relative vorticity is zero for stationay atmosphere

f


 

2
1 0 /g m s

4 1
1 0f s

 


1 0

1 0 0

K

p h p a






4 1 1 12 6 2
1 0 1 0

1 0
1 0 /

1 0 0 0
s

K
m sP V s m s K

P
g

a
k

    
   



6 2 1 1
1 0 1

s
P m s K kg P V U

  
 

Isentropic potential vorticity is of the order of:

Potential Vorticity Unit

15

Values of IPV < 1.5 PVU are generally associated with tropospheric air

Values of IPV > 1.5 PVU are generally associated with stratospheric air



Comparison to Isobaric Analyses:

Regions of low geopotential heights correspond to regions with large 
PV values
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Consevation of absolute vorticity 

Conservation of absolute vorticity following the motion provides a
strong constraint on the flow, as can be shown by a simple example
that again illustrates an asymmetry between westerly and easterly
flow.

Then, if absolute vorticity is conserved, the motion at any point along 
a parcel trajectory that passes through (x0, y0) must satisfy

0
f f  

Suppose that at a certain point (x0, y0) the flow is in the zonal
direction and the relative vorticity vanishes so that
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Whereas trajectories that curve southward must have

0
0f f   

However, as indicated in the figure if the flow is westerly, northward
curvature downstream implies 0 

whereas southward curvature implies 0 

Thus, westerly zonal flow must remain purely zonal if absolute
vorticity is to be conserved following the motion.

The easterly flow case, also shown in Fig. Is just the opposite.

Northward and southward curvatures are associated with negative
and positive relative vorticities, respectively.

Hence, an easterly current can curve either to the north or to the
south and still conserve absolute vorticity.
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Because f increases toward the north, trajectories that curve 
northward in the downstream direction must have

0
0f f   



The potential vorticity can only be changed by diabatic heating or friction

The vortex of air on the left in is broad and slow. When the air
converges, the column stretches, i.e. h increases. To maintain
potential vorticity, the air spins faster (ξ increases), resulting in
the streched vortex on the right.
Divergence, on the other hand, causes vortex spreading and slows
down the rate of spin.
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Conservation of potential vorticity (relative plus planetary)
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Conservation of potential vorticity in the absence of stretching (N.H.) 
(Balance of planetary vorticity and relative vorticity)
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Vorticity
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Conservation of potential vorticity (relative and stretching)
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Conservation of potential vorticity (planetary and stretching)

h1

1

1

( )f
P V

h

j
=

2

2

( )f
P V

h

j
=

1 2

1 2

( ) ( )f f

h h

j j
=

Conservation of potential vorticity in the absence of relative vorticity 
change (N.H.) (Balance of planetary vorticity and stretching)

h2

25



( )( )
E

P V g f
p







  



As the air flows over the mountain, the potential temperature is

conserved, so the 300K isentrope (ɵ in Fig) bends over the mountain.

Air aloft, at the 320K isentrope (ɵ+Δɵ), is lifted much less as it

passes the range.

Therefore Δɵ is reduced over the mountain chain, and to keep the

potential vorticity constant, the absolute vorticity )f + ξ( must be
reduced equally.
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