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Waves are moving energy 

Forces cause waves to move along air/water or within water 

Wind (most surface ocean waves) 

Movement of fluids with different densities 

Internal waves often larger than surface waves 

Mass movement into ocean 

           Splash waves 



In an ocean wave, energy is moving at the speed of the wave, 
but water is not! 

 

Waves move energy, with very little movement of particles 
(including water particles!) 

 

The water ‘associated’ with a wave does not move continuously 
across the sea surface! 
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Types of waves 

Wave particles move in a circle 
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Deep Water Wave 

Wave base is 1/2 wave length 

Negligible water movement due to waves below this depth 

Wave speed form (celerity) is proportional to wavelength  
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Shallow-water wave 

Water depth is less than 1/20 wavelength 

Wave speed (celerity) is proportional to depth of water 

Orbital motion is flattened 
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Shallow-Water Wave 

4- Shallow water,  Require λx >> h.  Otherwise too deep for hydrostatic 
assumption. 

The second example of pure wave motion concerns the horizontally 
propagating oscillations known as shallow water waves.  

 hydrostatic approximation 
0

p
g

z







1- Incompressible and homogeneous flow, where ρ0 is a constant density 
=> no sound waves (simplifies equations) 

.  

2- The flow is assumed to be inviscid 

3-The water is so shallow that the flow velocity, V(x, y), is constant with 
depth. 
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Restoring Force:  Gravity 

Force is transverse to direction of propagation 

Gravity waves are buoyancy waves, the restoring force comes from 

Archimedes’s principle. 

They involve vertical displacement of air parcels, along slanted paths 
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They are found everywhere in the atmosphere 

They can propagate vertically and horizontally, transporting momentum 
from their source to their sink 

They are difficult features to represent correctly in global models,  
this is an area of active current research. 
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What causes them? 

These waves can be generated in a variety of ways, but flow over 
mountains is one very common production method. This is shown 
in the next diagram. 

Flow over convective cloud  

Flow over a mountain range 



z = h(x, y), the height of the free surface at point (x,y) that, the 
pressure is equal to atmospheric pressure p(h), assumed constant 
and uniform.   

p=p(h)  
p=p(h)  

Consider the volume of water bounded by vertical surfaces A and B 
in Figure. These surfaces are located at x and x+dx respectively. 

Integrating the hydrostatic equation over the depth of the fluid, 
h(x, y), gives the pressure between z and h below the surface 

11 



0( ) ( )) + (   *p gz p h h z 

where p(h) is the pressure at the top of the layer of shallow water 
due to the layer above, which we take to be a constant.  

0 0

h h

z z

p
dz gdz

z



 

 

Using * to replace pressure in the momentum equation gives 

 
ˆ   *h

h

d V
g h fk V

dt
    

We assume that 

V is initially a function of (x, y) only, and since h is a function of (x, y).  

This equation indicates that V will remain two-dimensional for all time.  

1
hp g h


     12 



0
v v v h

u v fu g
t x y y

   
    

   

( ) 0
h h h u v

u v h
t x y x y

    
    

    

ˆ   *h
h

d V
g h fk V

dt
    

.( , , ) 0u v w 

Mass conservation for a constant density flow has the simple form 

0
u u u h

u v fv g
t x y x

   
    

   




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Water pressure is a function of density and temperature, p = f(T, ρ) 
but following the motion incompressibility implies 

+ 0
f f

dp dT d
T




 
 
 

/ 0dp dt 

0( ) ( ) ( )p z g h z p h  

( )hd h dz
w h

dt dt
 

is the vertical motion, which is a function of (x, y, z) 
dz

w
dt


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Integrating .( , , ) 0u v w  ( ) .hw h h V 

.    *h
h

d h
h V

dt
  

The shallow water equations consist of 2 and 3 star. 

The linearized momentum equation *’ mass continuity equations *” are:   

' '
'

u h
g fv

t x

 
  

 

' '
'

v h
g fu

t y

 
  

 

( )
h u v

h
t x y

    
  

  

Primes denote perturbation values, that 
is, departures from the state of rest. 

These equations represent a set of three 
coupled first-order partial differential 
equations in the unknown , ,u v h  
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One approach to solving these equations is to form and solve a single 
third-order partial differential equation.  

t




This is accomplished by taking      of the third equation, which gives 

2 2 2

2
( )

h u v
h

t x t yt

    
  

   

The terms on the right side of this equation may be replaced using 
the first two equations of 

2
2

2
( )h

h
h g h f

t



    



Again take      which gives the third-order equation 
t





3
2 2

3
( ) 0  *h

h h
f gh

tt

  
   
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where           is replaced using the linearized version of 

 

 

(noting that f is taken constant here): 

/ t  

( ) ( )( )hd u v
f f

dt x y
 

 
    

 

( )
u v

f
t x y

     
  

  

Assuming that the lateral boundaries are periodic and, since the 
coefficients               constant, we may assume wave solutions of the 
form 

  f and gh

 ( )Re   *i kx ly th Ae   

Using *’ in *gives a cubic polynomial for the frequency 

3 2 2 2( ) 0f gh k l       
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This is the dispersion relationship for shallow water waves.  

 

0 0 Clearly             is a solution, and if          , then 

2 2 2 2( )f gh k l   

For readers familiar with linear algebra, we note an alternative 
solution method. 

The solution of the form                          for h’ , u‛, and v’ , and 
substituting directly into 

                                        

 

 ( )Re i kx ly th Ae   

' '
'

u h
g fv

t x

 
  

 

' '
'

v h
g fu

t y

 
  

 
( )

h u v
h

t x y

    
  

  

converts the set of partial differential equations to algebraic equations 

0Ax 
that may be written as 19 
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where x is the column vector of the unknowns  
u

v

h

 
 
 
  

   -      

      -     g 0

   -     -   

i f ikg u

f iv il v

hhk hl





   
       
     

A nontrivial solution to is obtained only if A is not invertible. 

This is enforced by setting the determinant of A to zero, which gives 

3 2 2 2( ) 0f gh k l       
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we see that since the waves are stationary, the left sides are zero. 

 Clearly, these waves depend on rotation, since when f = 0, the wave 
amplitude, A, must also be zero.  

For non zero f : 
'

'
g h

v
f x






'
'

g h
u

f y


 



Turning now to the structure of the waves, consider first the case 

where ω=0. Appealing to 

' '
'

u h
g fv

t x

 
  

 

' '
'

v h
g fu

t y

 
  

 

( )
h u v

h
t x y

    
  

  

Geostrophic Balance 
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The stationary waves are in a state of geostrophic balance and are an 
example of Rossby waves in the limit of constant Coriolis parameter.  

Solutions for ω ≠ 0 are called inertia–gravity waves, since particle 
oscillations depend on both gravitational and inertial forces.  

inertia–gravity waves 

So that we may focus here on the gravitational aspect. 

In the limiting case f  0= , we have simply gravity waves, and from 

2 2 2 2( )f gh k l   

The shallow water gravity wave speed becomes   

c gh
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Since the waves all move at the same speed, they are nondispersive. 

c gh

  4  For h km deep 1200 c ms 

Thus, long waves on the ocean surface travel very rapidly.  


