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Wave groups formed from two sinusoidal components of slightly different 
wavelengths. 

For nondispersive waves, propagates without change of shape.  

For dispersive waves, the shape of the pattern changes in time. 
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Dispersion and Group Velocity 
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Schematic showing propagation of wave groups 

Heavy lines show group velocity, and light lines show phase speed 

group velocity less than phase speed 

 group velocity greater than phase speed  
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An expression for group velocity, which is the velocity at which the  
observable disturbance (and thus the energy) propagates, can be  
derived as follows: 

We consider the superposition of two horizontally propagating waves of 
equal amplitude but slightly different wavelengths, with wave numbers 
and frequencies differing by 2δk and 2δω respectively.  

Usually every spectral component propagates with its own 
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A wave package consisting of components around k and  propagates with the 

group velocity .
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Assume the sum of two waves of equal amplitude, and 
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The total disturbance is: 
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Rearranging terms and applying the Euler formula gives 
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This disturbance is the product of a high-frequency carrier wave of wavelength  
2π/k whose phase speed, ω/k,  
 
is the average for the two Fourier components, and a low-frequency envelope of  
wavelength 2π/δk that travels at the speed δω/δk 
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The envelope has a wavelength of 
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The wave energy thus propagates at the group velocity.  

group velocity 

The envelope has a phase 
g = k x t  

This result applies generally to arbitrary wave envelopes provided that the 
wavelength of the wave group, 2π/δk, is large compared to the wavelength 
of the dominant component, 2π/k. 
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Fourier Series 

Each wave package (disturbance) can be represented as a sum of waves. 
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The representation of a perturbation as a simple sinusoidal wave might 
seem an oversimplification, since disturbances in the atmosphere are 
never purely sinusoidal.   
 

It can be shown, however, that any reasonably well-behaved function of 
longitude can be represented in terms of a zonal mean plus a Fourier 
series of sinusoidal components: 

Fourier Series 
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 The zonal wave number (m-1) 

L is the distance around a latitude circle,  

s, the planetary wave number, is an integer des designating the number 
of waves around a latitude circle.  
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Fourier Series 

disturbance 
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The coefficients As are calculated by multiplying both sides of equ. by 
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where n is an integer, and integrating around a latitude circle.  
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Applying the orthogonality relationships 
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In a similar fashion, multiplying both sides in equ. by                   and  
integrating gives:  
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As and Bs are called the Fourier coefficients 
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and   sin coss s s s sf x A k x B k x 

is called the sth Fourier component or sth harmonic of the function f (x) 

The expression for a Fourier component may be written more compactly 
using complex exponential notation.  

According to the Euler formula, cos sinie i    1/2( 1)i  

  Re( )sik x

s sf x C e Re( cos sin )s s s sC k x iC k x 

Cs is a complex coefficient  

Comparing Re( )s sB C Im( )s sA C
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Wave Properties in Two and Three Dimensions 

A two-dimensional plane wave in a scalar field,f,  may be expressed as 

( )( , , ) Re( )i kx ly tf x y t Ae   Re( )iAe

Independent variables (x, y) and t represent space and time, respectively.  
 

C constant  

kx ly C    is uniform along lines of constant  kx ly
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Constant values of 
( 2 )i i n

e e
  


where n is an integer, define lines of constant phase, such as lows and highs. 

phase 
i

e


phase angle,    ,  

Two-dimensional plane wave at a fixed time:  

Wavelength is denoted    . Note that if ω > 0, the wave travels in the direction 
of the wave vector,  



The wave vector is defined by K 

Lines of 
constant  

f = kx+ ly-nt

ˆ ˆK kx ly  

K^const.f

ˆly

ˆkx

|K| =(phase-change)/(unit-length) 

k = (phase-change in x-direction)/(unit-length) 

l = (phase-change in y-direction)/(unit-length) 
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k K is the total wave number,  

2

k


 and therefore              is the wavelength that is, the distance between lines 

of constant phase. 

At any fixed point in space,  ,C t   C constant, so    is a linear function 
of time.  

Therefore, frequency is defined as 
t





 



which is the rate at which lines of constant phase pass a fixed point in space. 

The wave period is 
2


, which is the length of time between points of constant 

phase (units: seconds).  
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The wave phase speed (m s-1) is determined by how fast lines of constant phase 
move along the wave vector 
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In particular, for two and three dimensions, the phase speed is not the same as  
 

xc
k
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l




Which define the rate at which phase lines travel along the x and y coordinate 
axes, respectively.  

Furthermore, c, cx, and cy do not satisfy rules of vector addition, so 

2 2 2

x yc c c 

1-D case: Move with point of  

constant phase - e.g., crest 

c 

2-D 

By analogy with 1-D, for phase speed c, 
perpendicular to lines of constant   



Phase Speed in Coordinate Directions 

Move with point of constant 
phase - e.g., crest 

move only in 
x-direction:  0

d
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7.2 Wave Properties 
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Similarly, looking at phase change only in y direction (e.g., crest movement in y)  
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wave vector 

frequency  
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Frequency is defined by a dispersion relationship, so that  ω is a function of K. 

As such,       may be evaluated using the chain rule 

. )k K   

( , )k
k l

 


 
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Where                               is the group velocity,  

Therefore, * can be written as 
 

( . ) 0 g

K
C K

t


  



Consequently, in a frame of reference moving with the group velocity, the 
wave vector is conserved; that is, we follow a group of waves with fixed 
wavelength and frequency. 


