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Chapter &
Atmospheric Oscillations
Linear Perturbation Theory

To describe large-scale atmospheric motions with some accuracy
requires numerical techniques.

This makes it difficult to understand the fundamental processes and the
balances of forces.

Meteorological disturbances often have a wave-like character.

Do discuss waves in the atmosphere or in fluids, we linearize the
governing equations using the perturbation method.

Governing equations of the atmosphere are non-linear (e.g. advection
terms) and cannot be solved analytically in generall




Perturbation Method

We linearize the equations and study here the linear wave solutions
analytically.

In the perturbation method, all field variables are divided into two parts:

1) a basic state portion, which is usually assumed to be independent of
time and longitude,

2) a perturbation portion, which is the local deviation of the field from
the basic state.

Field variable = (basic state part) + (pertubation part)

Assume u, v, p, T, etc. are time and longitude-averaged variables,
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u(x,t) =u+u'(x,t)




In that case, for example, the inertial acceleration 1% can be written:
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Non-linear equations are reduced to linear differential equations in the
perturbation variables in which the basic state variables are specified
coefficients.




Basic assumptions of perturbation theory are:

1) The basic state variables must themselves satisfy the governing equations.
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pP. P define the basic atmospheric state and satisfy —
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2) Perturbations must be small enough to neglect all products of perturbations.




Applying the perturbation method to the wmomentum equation is
illustrated below.
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We can simplify this equation by recognizing that the basic state
variables are independent of time, and that only the pressure and

density basic state variables are functions of z.
Also, we assumed that the base-state vertical velocity is zero. The

equation then becomes
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Since the perturbation quantities are very small, we assume that we
can ignore products of perturbation quantities. This further simplifies
the equation to

du’ _ou’ _du 1 dp+p) L
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We also assume that we can ignore perturbations of density in the
horizontal pressure gradient ferm (similar to the Boussinesq
approximation), to get




And finally, if we assume that the basic state is in geostrophic balance,
then
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fr=0.

so that we are left with
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This is the linearized, or perturbation form of, the w«-momentum
equation.

Linearization of the v-momentum equation proceeds in a similar manner.
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LINEARIZING TRE W-MOMENTUM EQUATION

The w-momentum equation is a bit trickier, because we can't ignore the
density perturbation in the vertical pressure gradient term like we
could in the horizontal pressure gradient term of the w-momentum
equation. So, affer substituting the basic state and perturbation
variables into the w-momentum equation we get
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A rule of algebra tells us that if a<< 1, then EE l-a

Using this rule we can write
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Using this, the RHS of the w-momentum equation becomes
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and since we can ignore products of perturbation terms, this simplifies to

L[‘p'aﬁ dp dp] ¢
plpodz OJz

If the basic state is in hydrostatic balance, then a_ﬁz_p g

Substituting this into the equation above it gives
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so that the linearized w-momentum equation is
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Note that what we've done is to use the basic state density everywhere
except in the buoyancy term (the term involving g), where we used the
perturbation density.

This is essentially the Boussinesq approximation, the difference being
that the reference density is allowed to vary spatially, whereas in the
Boussinesq approximation the reference density is assumed to be a true
constant.




THE FINAL FORM OF THE PERTURBATION ERUATIONS

If we assume that the basic state is in geostrophic and hydrostatic
balance, and that the base-state density is a function of z only, the
linearized momentum and continuity equations are
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equation of state: p = pRT

ot ox dy p Iy For this set of equations it is now
, , , ;o possible to find the wave solutions
dIw .HTaw +v Iw =— L dp " - analytically.
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Thermodynamic equation




Properties of Waves

Wave motions = oscillations in field variables that propagate in space

Familiar example of oscillation: the pendulum
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The harmonic oscillator equation has the general solution:
6 =0, cosot+80,sinot=20, cos(wt-a)
Where 0,, 0,, 0, and o are constants determined by the initial conditions
6=0 Re[ei(m_“q = Re[e ei(wt_aq = Re| 0 e_i“eim]
0 0 0
6 = Re [Cei”t]
A sinusoidal wave propagating in the x direction is given by

y (X, t)= Re[(;ei("x“‘")} C=complex amplitude = |C|ei¢°




Phase velocity

How does a point of constant phase move through space?

Lo

Thus, for a one-dimensional wave propagating in the x direction,
p(X,t) = kx — ot —a = const

k =wave number, o = angular frequency =2r f (here f = frequency)

¢ = kx — wt = phase, or ¢:k(x—2t\
_—

For propagating waves the phase is constant for an observer moving
at the phase speed
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This may be verified by observing that if phase is to remain constant
following the motion,

dg d dx
dt dx dt

Phase speed c¢c=—=

If observer is moving with the wave, then phase is constant.

This gives the change in position x in tfime T, hence speed, for point maintaining
constant phase with respect to wave.
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Wave number is assumed to be unity. W _




The phase velocity of a wave is the rate at which the phase of the wave
propagates in space.

any given phase of the wave (for example, the crest) will appear to travel at
the phase velocity.
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The red dot moves with the phase velocity, and the green dots propagate
with the group velocity.

The phase velocity is twice the group velocity.

The red dot overtakes two green dots when moving from the left to the
right of the figure.




