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To describe large-scale atmospheric motions with some accuracy
requires numerical techniques.

This makes it difficult to understand the fundamental processes and the
balances of forces.

Meteorological disturbances often have a wave-like character.

Do discuss waves in the atmosphere or in fluids, we linearize the
governing equations using the perturbation method.

Governing equations of the atmosphere are non-linear (e.g. advection 
terms) and cannot be solved analytically in general!
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A ssum e  u, v, p, T , e tc . a re  t im e  and  lo n g itud e -averaged  var iab le s , 

In the perturbation method, all field variables are divided into two parts:

Fie ld  va r iab le   =  (b as ic  sta te  part) +  (pe rtub at io n  part)

 ( , ) ' ,u x t u u x t 

2) a perturbation portion, which is the local deviation of the field from 
the basic state. 

1) a basic state portion, which is usually assumed to be independent of 
time and longitude,

We linearize the equations and study here the linear wave solutions 
analytically.
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In that case, for example, the inertial acceleration          can be written:
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Non-linear equations are reduced to linear differential equations in the
perturbation variables in which the basic state variables are specified
coefficients.



Basic assumptions of perturbation theory are:

1) The basic state variables must themselves satisfy the governing equations.

 ,  p define the basic atmospheric state and satisfy
p
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2) Perturbations must be small enough to neglect all products of perturbations.



Applying the perturbation method to the u-momentum equation is
illustrated below.
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We can simplify this equation by recognizing that the basic state
variables are independent of time, and that only the pressure and
density basic state variables are functions of z.
Also, we assumed that the base-state vertical velocity is zero. The
equation then becomes
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Since the perturbation quantities are very small, we assume that we
can ignore products of perturbation quantities. This further simplifies
the equation to

We also assume that we can ignore perturbations of density in the
horizontal pressure gradient term (similar to the Boussinesq
approximation), to get



And finally, if we assume that the basic state is in geostrophic balance, 
then

so that we are left with

This is the linearized, or perturbation form of, the u-momentum
equation.

Linearization of the v-momentum equation proceeds in a similar manner.



LINEARIZING THE W-MOMENTUM EQUATION

The w-momentum equation is a bit trickier, because we can’t ignore the
density perturbation in the vertical pressure gradient term like we
could in the horizontal pressure gradient term of the u-momentum
equation. So, after substituting the basic state and perturbation
variables into the w-momentum equation we get

A rule of algebra tells us that if a << 1, then

Using this rule we can write



Using this, the RHS of the w-momentum equation becomes

and since we can ignore products of perturbation terms, this simplifies to

If the basic state is in hydrostatic balance, then

Substituting this into the equation above it gives



so that the linearized w-momentum equation is

Note that what we’ve done is to use the basic state density everywhere
except in the buoyancy term (the term involving g), where we used the
perturbation density.

This is essentially the Boussinesq approximation, the difference being
that the reference density is allowed to vary spatially, whereas in the
Boussinesq approximation the reference density is assumed to be a true
constant.



THE FINAL FORM OF THE PERTURBATION EQUATIONS

If we assume that the basic state is in geostrophic and hydrostatic
balance, and that the base-state density is a function of z only, the
linearized momentum and continuity equations are

( ln ) ( ln )

p

d T R d p

d t c d t
 Thermodynamic equation

equation of state: p R T

For this set of equations it is now 
possible to find the wave solutions 
analytically.
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The harmonic oscillator equation has the general solution:
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A  s in uso id a l w ave  propagat ing  in  th e  x  d irect ion  is  g iven  b y
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Where  θ1 , θ2 , θ0 and α are constants determined by the initial conditions 
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Thus, for a one-dimensional wave propagating in the x direction, 
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For propagating waves the phase is constant for an observer moving 
at the phase speed 
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H ow  d oes  a  po in t  of  constant  ph ase  m ove  th rough  space?
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This may be verified by observing that if phase is to remain constant 
following the motion,
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Wave number is assumed to be unity.

If observer is moving with the wave, then phase is constant. 

This gives the change in position x in time t, hence speed, for point maintaining 
constant phase with respect to wave.



The phase velocity of a wave is the rate at which the phase of the wave
propagates in space. 

any given phase of the wave (for example, the crest) will appear to travel at
the phase velocity.

The red dot moves with the phase velocity, and the green dots propagate 
with the group velocity. 

The phase velocity is twice the group velocity. 

The red dot overtakes two green dots when moving from the left to the 
right of the figure.


