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Equations of motion on rotating earth

In scalar form the equations of motion for each direction become:
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The complete momentum equations on a spherical rotating earth
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FOR SYNOPTIC SCALE MOTIONS

WHICH TERMS ARE LARGE AND IMPORTANT?
WHICH TERMS ARE SMALL AND INSIGNIFICANT?



Scale Analysis of the Equations of Motion

Scale analysis, or scaling, is a convenient technique for estimating
the magnitudes of various terms in the governing equations for a
particular type of motion.

Elimination of terms on scaling considerations simplify mathematics
and allows to eliminate and filter unwanted types of motions, like
sound waves.

In order to simplify the motion equations for synoptic scale motions
we define following characterstic scales of the field variables based
on observed valuses for midlatitude synoptic systems.




U~ 10mst

horizontal velocity scale

W~ 0.01 mst vertical velocity scale

L~"10°m horizontal Ieﬂs'g’alé
H~ 104?

p~ 1000 hPa (10°Pa) mean surf

3P/p~ 18.hPa/1~(103
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Scale Analysis
of the Horizontal Momentum Equation

It is possible to scale each term of each horizontal equation
using previously defined scales and the definition of the Coriolis
parameter:

Q=7.27x10>s1

f, = 2Qsin ¢, = 2Qcosgp, =107*s™

density

kinematic viscosity 1.46x107" m- s~}

omega 7.292x10-° rad s~

latitude
radius of Earth n 6.378x10° m
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The Geostrophic Approximation and Geostrophic wind

Retaining only two bigger terms from the analysis equation, it is
possible to write the first approximation geostrophic balance:
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This equation is diagnostic (no reference to time) and allows the
definition of geostrophic wind as balance between Coriolis and




Geostrophic Wind

Winds aloft (above ~1000 m) flowing in a straight line, a balance
between 2 forces:

Pressure gradient force (PGF)
Coriolis 'force' (CF)

A wind that begins to blow across the isobars is turned by the
Coriolis 'force’ until Coriolis ‘force’ and PGF balance
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Geostrophic Wind

Above the level of friction, air
initially at rest will accelerate
until it flows parallel to the
isobars at a steady speed with
the pressure gradient force
(PGF) balanced by the Coriolis
force (CF).

Wind blowing under these
conditions is called geostrophic.




The isobars and contours on an upper-level chart are like the
banks along a flowing stream. When they are widely spaced, the
flow is weak; when they are narrowly spaced, the flow is stronger.

The increase in winds on the chart results in a stronger Coriolis
force (CF), which balances a larger pressure gradient force (PGF).
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Geostrophic Flow at 500 mb

When the flow is parallel to approximately straight height lines, the
flow is geostrophic.




Geostrophic wind

In the absence of any other “forces”, the Coriolis force
balances the PGF and the flow is steady.

This is called the Geostrophic Wind. On a weather map, say
at 500 mb, the wind vectors are usually parallel to the

contours, and the flow around a cyclone is anticlockwise in
the NH.




Approximate Prognostic Equation

To obtain prediction equation it is necessary to retain also
acceleration term. The resulting approximate horizontal
equations can be written as:
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Since acceleration terms in above equations are proportional
to the difference between the actual wind and the




The Rossby Number

The Rossby Number is a dimensionaless humber used in describing

geophysical phenomena in the oceans and atposphere.

It characterises the ratio ofinertial forces in a fluid to the fictitious

forces arising from planetary rotation.
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When the Rossby number is large (such as in the tropics and at
lower latitudes), the effects of Planetary rotation are unimportant
and can be neglected.

When the Rossby number is small (Ry«1) , then the effects of
planetary rotation are large and the geostrophic approximation is
valid.




The Hydrostatic Approximation

A similar scale analysis can be applied to the vertical Component of the
momentum equation.
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The biggest terms give the hydrostatic approximation:

Lo




Po(z) is the horizontally averaged pressure at each height.

po(z) is standard density.

We may then write the total pressure and density fields as:

P(x,y,z,t)=P,(z)+P'(x,y,z,t)

p(x.Y,2,t)= py(2)+ p'(x, y,2,1)

Where P’ and p' are deviation from the standard values of pressure and
density ( perturbation). For an atmosphere at rest, would thus be zero.
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ABOVE THE BOUNDARY LAYER
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The Hidden Simplicity of Atmospheric Dynamics:

ABOVE THE BOUNDARY LAYER, ALL
du__10P ey HORIZONTAL PARCEL ACCELERATIONS CAN
dt  p ox BE UNDERSTOOD BY COMPARING THE
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THE ATMOSPHERE IS IN HYDROSTATIC




The Continuity Equation i g 4lalaa

We turn now to the second of the three fundamental conservation
principles, conservation of mass.

The mathematical relationship that expresses conservation of
mass for a fluid is called the continuity equation.
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We consider a volume element 8x dy &z that is fixed in a Cartesian

coordinate frame as shown in Fig.
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Since the area of these faces is dy 6z, the net rate of flow
into the volume owing to the x velocity component is:
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Thus, the net rate of mass inflow is
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