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Total Differentiation of a Vector in a Rotating Frame of Reference

Before we can write Newton’s second law of motion for a reference
frame rotating with the earth, we need to develop a relationship
between the total derivative of a vector in an inertial reference frame
and the corresponding derivative in a rotating system.
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in an inertial frame of reference, and
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in a rotating frame of reference

Let be an arbitrary vector with Cartesian componentsA
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.ماهیت بردار در دستگاه لخت و چرخان یکی است
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in an inertial frame of reference, then

If
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Since the coordinate axes are in an inertial frame of reference,
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(Eq. 1)
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in a rotating frame of reference, thenIf
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(Eq. 2)



Because the left hand sides of (Eq. 1) and (Eq. 2) are identical,
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Regrouping the terms
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effects of rotation
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Thus 

To interpret

think of each unit vector as a position vector

linear velocity = angular velocity x position vector
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This equation provides us with a formal way of expressing the balance 
of forces on a fluid parcel in a rotating coordinate system.

(effects of rotation)
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Newton’s second law in an inertial reference frame:

To transform to rotating coordinates:
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is the position vector for an air 

parcel on the rotating earth
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Velocity is the rate of change of 
the position vector with time

Using the transformation
of the total derivative
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Using some vector identities and
defining as a vector perpendicular to
the axis of rotation with magnitude equal
to the distance to the axis of rotation.
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 R


Acceleration 
following the motion 
in an inertial system

Rate of change of relative velocity 
following the relative motion in a 

rotating reference frame.

Coriolis 
acceleration

Centrifugal 
acceleration
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Substituting into Newton’s second law:

If the real forces acting on a fluid parcel are the pressure gradient 
force, gravitation and friction, then
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rFgpV
dt
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2

Rate of change of relative 
velocity following the 
relative motion in a 

rotating reference frame.

Coriolis 
acceleration

Pressure gradient 
force (per unit mass)

Gravity term 
(gravitation + 
centrifugal)

Friction

Vector momentum equation in rotating coordinates



Momentum Equations in Spherical Coordinates

For a variety of reasons, it is useful to express the vector momentum
equation for a rotating earth as a set of scalar component equations.

The use of latitude-longitude coordinates to describe positions on
earth’s surface makes it convenient to write the momentum equations
in spherical coordinates.

The coordinate axes are (l,,z) 

Where, 

l is longitude, 

 is latitude, 

z is height.
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Orientation of Coordinate Axes

ll daRddx cos

The x- and y-axes are customarily defined to point east and north, 
respectively, such that
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Thus the horizontal velocity components are
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The unit vectors in the spherical coordinate system are functions of position
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A Complication of Spherical Coordinates

When the x and y coordinates are defined in this way, the coordinate
system is not strictly Cartesian, because the directions of the unit
vectors depend on their position on the earth’s surface.
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