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Pressure As A Vertical Coordinate
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How do we convert our equations from height
coordinates (x,y,z) to pressure coordinates (x,y,p)?



Generalized Vertical Coordinates

= The use of pressure as a vertical coordinate is a
specific example of the use of generalized vertical
coordinates.

m Any quantity s = s(x,y,z 1) that changes
monotonically with height can be used as a vertical
coordinate.

= If we wish to transform equations from (xy,z)
coordinates to (x,y,s)coordinates, derivatives
must be transformed.
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Let F = some scalar property, and F
s = a generalized vertical coordinate.

We would like to transform
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can be written in vector form as
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We will use this equation to
transform the horizontal
derivatives in the momentum
equation from z-coordinates to
p-coordinates.




Horizontal momentum equation scaled for midlatitude large-scale motions.
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Characteristics of pressure (isobaric) coordinates:

Vertical velocity is expressed as o = dp/dt. Rising air
moves from higher to lower pressure, so upward
motion occurs when o < 0.

The geopotential height gradient takes the place of the
pressure gradient.

Low geopotential height on an isobaric surface are
analogous to low pressure on a surface chart.

Expansion of the total derivative takes the following form:
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pressure at a constant level is similar to
geopotential height at constant pressure
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The Basic Conservation Laws

Atmospheric motions are governed by three
fundamental physical principles:

Conversation of mass
Conversation of momentum
Conversation of energy

The mathematical relations that express these laws
may be derived by considering the budgets of
mass, momentum, and energy for an infinitesimal
control volume in the fluid.



Two types of control volume are commonly used
in fluid dynamics:

= Eulerian frame
= Lagrangian frame

In the Eulerian frame of reference the control volume
consists of a parallelepiped of sides éx, dy, 6z, whose
position is fixed relative to the coordinate axes.

In the Lagrangian frame the control volume consists an
infinitesimal mass of "tagged"” fluid particle; thus, the
control volume moves about following the motion of
the fluid, always containing the same fluid particles.




ot o
ax
fofxt) oo
OX ot

f=f(xy,zt)



Expansion of Total Derivative

if f=f(XY,zt) then
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dt dt dt
u = west-east component of fluid velocity
v = south-north component of fluid velocity

w = vertical component of fluid velocity
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Term A: Total rate of change of 7 following the fluid motion
Term B Local rate of change of 7 at a fixed location

Term C: Advection of 7 in x direction by the x-component flow
Term D: Advection of fin y direction by the y-component flow
Term E: Advection of fin z direction by the z-component flow



Total Derivative vs. Local Derivative
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Total derivative is the temporal rate of change
following the fluid motion.

Example: A thermometer measuring changes
as a balloon floats through the atmosphere.

Local derivative is the temporal rate of
Change at a fixed point.

Example: An observer measures changes
in femperature at a weather station.




Advection Terms
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Taylor Series

A function f(x)can be computed by Taylor expansion given
the values of the function and its derivatives at a point x;

A truncated Taylor series can be used to approximate 7(x)



