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Chapter 2 – First Order Equations
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In general, solving a differential equation is not an easy matter.



Separable equation

A separable equation is a first-order differential equation that can be written in 

the form
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The name separable comes from the fact that the expression on the right side 

can be “separated” into a function of x and a function of y.

To solve this equation we rewrite it in the differential form
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It defines y implicitly as a function of x. In some cases we may 

be able to solve for y in terms of  x



Example 1: Solve the differential equation
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The above general solution is in implicit form. In this case it is impossible to 
express y explicitly as a function of x.
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If y  0, we can rewrite it in differential notation and integrate: 
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First-Order Homogeneous Equations

A function f( x,y) is said to be homogeneous of degree n if the equation 
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Example 1: 

The function f( x,y) = x2 + y2 is homogeneous of degree 2, since 
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Example 2: 

The function f( x,y) = sin(x/y) is homogeneous of degree 0, since 
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Example 3: 

The function        is homogeneous of degree 4, since 628 3),( yxxyxf 
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Example 4: 

The function f( x,y) = 2 x + y is homogeneous of degree 1, since
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Example 5:

The function f( x,y) = x3 – y2 is not homogeneous, since 
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which does not equal tn f( x,y) for any n. 

2233 ytxt 



first-order differential equation

is said to be homogeneous if M( x,y) and N( x,y) are both homogeneous 

functions of the same degree. 
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We now complete the solution by integrating and replacing z by y/x.
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Example : Solve the equation 

    0)()()( 22  zdxxdzxzxdxxzx

This equation is homogeneous, as observed in above Example . 

Thus to solve it, make the substitutions

zdxxdzdyxzy 

Example : The differential equation 

is homogeneous because both M( x,y) = x2 – y2 and N( x,y) = xy are 

homogeneous functions of the same degree (namely, 2). 

0)( 22  xydydxyx



 
x

dx
zdz

cxz  ln
2

1 2

x

c
z ln

2

1 2 

x

c
xy

x

c

x

y
ln2ln)(

2

1 222 

0)( 223222  dxzxzdzxdxzxx

0032  xzdzdxzdzxdxx

This final equation is now separable 
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Expansion of Total Derivative
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If then

u = west-east component of fluid velocity

v = south-north component of fluid velocity

w = vertical component of fluid velocity
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A EDCB

Term A: Total rate of change of f following the fluid motion

Term B: Local rate of change of f at a fixed location

Term C: Advection of f in x direction by the x-component flow

Term D: Advection of f in y direction by the y-component flow

Term E: Advection of f in z direction by the z-component flow



Total Derivative vs. Local Derivative

Total derivative is the temporal rate of change

following the fluid motion. 

Example: A thermometer measuring changes 

as a balloon floats through the atmosphere.

Local derivative is the temporal rate of 

Change at a fixed point. 

Example: An observer measures changes 

in temperature at a weather station.
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Exact Differential Equations

If we have a family of curves f(x,y)=c, then its differential 

equation can be written in the form:
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For example, the family  x2y3=c  has:
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Suppose we turn this situation around, and begin with the differential equation
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A first –order differential equation of the form
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If there happens to exist a function  f(x,y) such that:
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is called an exact differential equation if the differential form M(x, 

y) dx + N(x, y) dy is exact, that is, this form is the differential
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This condition is not only necessary but also sufficient 

for * to be an exact differential equation. 

solution general is            ),( cyxf 

By integration we immediately obtain the general solution of  *  in the form
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