Differential Equations

Lecture 5

Sahraci

Physics Department

Chapter 2 - First Order Equations

$$
\begin{gathered}
F\left(x, y, y^{\prime}\right)=0 \quad \text { General Form } \\
\frac{d y}{d x}=y^{\prime}=f(x, y)
\end{gathered}
$$

In general, solving a differential equation is not an easy matter.

Separable equation

A separable equation is a first-order differential equation that can be written in the form

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

The name separable comes from the fact that the expression on the right side can be "separated" into a function of x and a function of y.

To solve this equation we rewrite it in the differential form

$$
\begin{aligned}
h(y) d y & =g(x) d x \\
\int h(y) d y & =\int g(x) d x
\end{aligned}
$$

It defines y implicitly as a function of x. In some cases we may be able to solve for y in terms of x

Example 1: Solve the differential equation

$$
\frac{d y}{d x}=\frac{6 x^{2}}{2 y+\cos y}
$$

$$
\begin{gathered}
(2 y+\cos y) d y=6 x^{2} d x \\
\int(2 y+\cos y) d y=\int 6 x^{2} d x \\
y^{2}+\sin y=2 x^{3}+c \\
c=c_{2}-c_{1}
\end{gathered}
$$

The above general solution is in implicit form. In this case it is impossible to express y explicitly as a function of x.

Example 2: Solve the differential equation
 $y^{\prime}=x^{2} y$

$$
\frac{d y}{d x}=x^{2} y \quad \frac{d y}{y}=x^{2} d x
$$

If $y \neq 0$, we can rewrite it in differential notation and integrate:

$$
\begin{gathered}
\ln y=\frac{x^{3}}{3}+c \\
y=e^{\frac{x^{3}}{3}+c}=e^{c} e^{x^{3} / 3}, y=C e^{x^{3} / 3}
\end{gathered}
$$

Example 3 : Differential equation of the form $\quad y^{\prime}=g\left(\frac{y}{x}\right)$
The form of the equation suggests that we set

$$
\frac{y}{x}=z
$$

$$
y=z x \quad y^{\prime}=z^{\prime} x+z
$$

$$
y^{\prime}=g\left(\frac{y}{x}\right)
$$

$$
z^{\prime} x=g(z)-z \quad \frac{d z}{g(z)-z}=\frac{d x}{x}
$$

First-Order Homogeneous Equations

A function $f(x, y)$ is said to be homogeneous of degree n if the equation

$$
f(t x, t y)=t^{n} f(x, y)
$$

Example 1:
The function $f(x, y)=x^{2}+y^{2}$ is homogeneous of degree 2, since

$$
f(t x, t y)=(t x)^{2}+(t y)^{2}=t^{2}\left(x^{2}+y^{2}\right)=t^{2} f(x, y)
$$

Example 2:
The function $f(x, y)=\sin (x / y)$ is homogeneous of degree 0 , since

$$
f(t x, t y)=\sin (t x / t y)=t^{0} \sin (x / y)=t^{0} f(x, y)
$$

Example 3:

The function $f(x, y)=\sqrt{x^{8}-3 x^{2} y^{6}}$ is homogeneous of degree 4 , since

$$
\begin{aligned}
f(t x, t y) & =\sqrt{(t x)^{8}-3(t x)^{2}(t y)^{6}}=\sqrt{t^{8}\left(x^{8}-3 x^{2} y^{6}\right)} \\
& =\sqrt{t^{8}} \sqrt{x^{8}-3 x^{2} y^{6}}=t^{4} f(x, y)
\end{aligned}
$$

Example 4:

The function $f(x, y)=2 x+y$ is homogeneous of degree 1 , since

$$
f(t x, t y)=2(t x)+(t y)=t(2 x+y)=t^{1} f(x, y)
$$

Example 5:

The function $f(x, y)=x^{3}-y^{2}$ is not homogeneous, since

$$
f(t x, t y)=(t x)^{3}-(t y)^{2}=t^{3} x^{3}-t^{2} y^{2}
$$

which does not equal $t^{n} f(x, y)$ for any n.

first-0rder differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous if $M(x, y)$ and $N(x, y)$ are both homogeneous functions of the same degree.

This equation can then be written in the form $\quad d y / d x=f(x, y)$
where $f(x, y)=-\frac{M(x, y)}{N(x, y)}$ is hom ogeneous of deg ree 0
solving the equation $z=y / x$

$$
\begin{gathered}
f(t x, t y)=t^{0} f(x, y)=f(x, y) \\
t=1 / x \quad f(x, y)=f(1, y / x)=f(1, z)
\end{gathered}
$$

$$
\begin{gathered}
y=z x \rightarrow \frac{d y}{d x}=z+x \frac{d z}{d x} \\
d y / d x=f(x, y) \\
z+x \frac{d z}{d x}=f(1, z) \\
\frac{d z}{f(1, z)-z}=\frac{d x}{x}
\end{gathered}
$$

We now complete the solution by integrating and replacing z by y / x.

Example: $\quad(x+y) d x-(x-y) d y=0$
$M(x, y)=(x+y) \rightarrow(t x, t y)=t(x, y)=t M(x, y)$
$N(x, y)=-(x-y) \rightarrow-(t x, t y)=-t(x, y)=-t N(x, y)$
$\frac{d y}{d x}=\frac{(t x+t y)}{(t x-t y)} \quad \frac{d y}{d x}=\frac{1+y / x}{1+y / x}=\frac{1+z}{1-z}$
$z=\frac{y}{x} \rightarrow y=z x \rightarrow \frac{d y}{d x}=x \frac{d z}{d x}+z$

$$
x \frac{d z}{d x}+z=\frac{1+z}{1-z}
$$

$$
\begin{gathered}
\frac{(1-z) d z}{1+z^{2}}=\frac{d x}{x} \int \frac{d z}{1+z^{2}}-\int \frac{z d z}{1+z^{2}}=\int \ln x \\
\tan ^{-1} z-\frac{1}{2} \ln \left(1+z^{2}\right)=\ln x+c \\
\tan ^{-1} \frac{y}{x}=\ln x \sqrt{1+(y / x)^{2}}+c \\
\tan ^{-1} \frac{y}{x}=\ln \sqrt{x^{2}+y^{2}}+c
\end{gathered}
$$

Example : The differential equation

$$
\left(x^{2}-y^{2}\right) d x+x y d y=0
$$

is homogeneous because both $M(x, y)=x^{2}-y^{2}$ and $N(x, y)=x y$ are homogeneous functions of the same degree (namely, 2).

Example : Solve the equation

This equation is homogeneous, as observed in above Example . Thus to solve it, make the substitutions

$$
\begin{gathered}
y=x z \rightarrow d y=x d z+z d x \\
{\left[x^{2}-(x z)^{2}\right] d x+[x(x z)](x d z+z d x)=0}
\end{gathered}
$$

$$
\begin{gathered}
\left(x^{2}-x^{2} z^{2}\right) d x+x^{3} z d z+x^{2} z^{2} d x=0 \\
x^{2} d x+x^{3} z d z=0 \rightarrow d x+x z d z=0
\end{gathered}
$$

This final equation is now separable

$$
z d z=-\frac{d x}{x}
$$

$$
\begin{gathered}
\int z d z=\int-\frac{d x}{x} \\
\frac{1}{2} z^{2}=-\ln x+c^{\prime} \quad \frac{1}{2} z^{2}=\ln \frac{c}{x} \\
\frac{1}{2}\left(\frac{y}{x}\right)^{2}=\ln \frac{c}{x} \Rightarrow y^{2}=2 x^{2} \ln \frac{c}{x}
\end{gathered}
$$

Expansion of Total Derivative

$$
\begin{gathered}
\text { If } f=f(x, y, z ; t) \text { then } \\
\delta f=\left(\frac{\partial f}{\partial t}\right) \delta t+\left(\frac{\partial f}{\partial x}\right) \delta x+\left(\frac{\partial f}{\partial y}\right) \delta y+\left(\frac{\partial f}{\partial z}\right) \delta z+H \cdot O \cdot T \\
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
u \equiv \frac{d x}{d t}, \quad v \equiv \frac{d y}{d t}, \quad w \equiv \frac{d z}{d t}
\end{gathered}
$$

$\mathrm{u}=$ west-east component of fluid velocity
$\mathrm{v}=$ south-north component of fluid velocity
$\mathrm{w}=\mathrm{vertical}$ component of fluid velocity

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z}
$$

Term A: Total rate of change of f following the fluid motion
Term B: Local rate of change of f at a fixed location
Term C: Advection of f in x direction by the x-component flow
Term D: Advection of f in y direction by the y-component flow
Term E: Advection of f in z direction by the z-component flow

Total Derivative vs. Local Derivative

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\vec{U} \cdot \nabla f \quad \frac{\partial f}{\partial t}=\frac{d f}{d t}-\vec{U} \cdot \nabla f
$$

Total derivative is the temporal rate of change following the fluid motion.
Example: A thermometer measuring changes as a balloon floats through the atmosphere.

Local derivative is the temporal rate of Change at a fixed point. Example: An observer measures changes in temperature at a weather station.

Exact Differential Equations

If we have a family of curves $f(x, y)=c$, then its differential equation can be written in the form:

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0
$$

For example, the family $x^{2} y^{3}=c$ has:

$$
2 x y^{3} d x+3 x^{2} y^{2} d y=0
$$

Suppose we turn this situation around, and begin with the differential equation

$$
M(x, y) d x+N(x, y) d y=0
$$

A first -order differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

If there happens to exist a function $f(x, y)$ such that:

$$
\frac{\partial f}{\partial x}=M \quad \text { and } \quad \frac{\partial f}{\partial y}=N
$$

is called an exact differential equation if the differential form $M(x$, $y) d x+N(x, y) d y$ is exact, that is, this form is the differential

$$
\begin{gathered}
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=0 \\
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial M}{\partial y} \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial N}{\partial x}
\end{gathered}
$$

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

This condition is not only necessary but also sufficient for * to be an exact differential equation.

$$
M(x, y) d x+N(x, y) d y=0
$$

By integration we immediately obtain the general solution of * in the form

$$
f(x, y)=c \quad \text { is general solution }
$$

$M d x+N d y \quad$ Exact diff.

$$
M(x, y) d x+N(x, y) d y=0 \quad \text { Exact diff. Eq. }
$$

Example

$$
\begin{gathered}
e^{y} d x+\left(x e^{y}+2 y\right) d y=0 \\
M=e^{y}, \quad N=x e^{y}+2 y \\
\frac{\partial M}{\partial y}=e^{y}, \quad \frac{\partial N}{\partial x}=e^{y}
\end{gathered}
$$

Thanks for your attention

