
معادلات دیفرانسیل

درش حهارم

صحرایی

گروه فیسیک دانشگاه رازی

http://www.razi.ac.ir/sahraei



Implicit function
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Explicit function:

If y is completely defined in terms of x, y is called an 

explicit.                 y = x2 – 4x + 2
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Standard Derivative
 y=f(x) 
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7 sin x cos x 

8 cos x - sin x 

9 tan x sec
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11 sec x sec x∙tan x  
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The angle between the tangent and 

radial line at the point  (r, θ ( is
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Page 20-5: Newton’s Law of Cooling

The rate of cooling of an object is directly 
proportional to the temperature difference 
between the object and its surroundings.

)( sTTk
dt
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The Problem

If an object takes 40 minutes to cool from 30 degrees to 

24 degrees in a 20 degree room, how long will it take the 

object to cool to 21 degrees?



Solving the Differential  Equation
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So c’ is the difference between the initial temperature of the 

cooling body and the surrounding room.

?c

Since  the initial temperature of the body is 30 

degrees, we have
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Since it takes 40 minutes for the body to cool from 30 degrees 
to 24 degrees we have
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How Long to Cool to 21?

We want t when T=21 so
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Page 35-3: Mixing problem

A tank contains 20kg of salt dissolved in 5000L of water.

Brine that contains 0.03kg of salt per liter of water enters

the tank at the rate of 25L/min. The solution is kept

thoroughly mixed and drains from the tank at the same

rate. How much salt remains in the tank after half an

hour?



y(t):  the amount of salt (in kilograms) after t minutes. 

y(0) = 20          and we want to find y(30).

Note that dy/dt is the rate of change in the amount of salt

dy/dt = Salt inflow rate – Salt outflow rate

rate in = (0.03kg/L)(25L/min) = 0.75 kg/min

rate out = (y(t)/5000 kg/L)(25L/min) = [y(t)/200 ]kg/min

The tank always contains 5000L of liquid, so the concentration 

at time t is y(t)/5000 (kg/L).

Since the brine flows out at a rate of 25L/min



dy/dt = Salt inflow rate – Salt outflow rate
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The amount of salt after 30 min is 
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Page 35-7: Leaking Tank. Outflow of Water                               

Through a Hole (Torricelli’s Law)

This is another prototype 
engineering problem that 
leads to an ODE. It concerns 
the outflow of water from a 
cylindrical tank with a hole at 
the bottom. You are asked to 
find the height of the water in 
the tank at any time if the 
tank has diameter 2 m, the 
hole has diameter 1 cm, and 
the initial height of the water 
when the hole is opened is 
2.25 m. When will the tank be 
empty?



where h(t) is the height of the water above the hole at 

time t, and g is acceleration of gravity at the surface of 

the earth.

Physical information. Under the influence of gravity the 

outflowing water has velocity:

)(26.0)( tghtv  (Torricelli’s law),

First we look at the amount of water that is running out of 

the tank in a time interval dt 

To get a D. E. for h(t), we have to consider that the volume 

V of the water running out in an interval dt is
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This volume must be equal to that the water missing in the tank 
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Means: the change in the water 

level is proportional to it’s square root!
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Use initial values to find particular solution: 

The initial height (the initial condition) is h(0) = 225 cm

152252  cc 2)00033215()( tthp 



2)00033215()( tthp 

Tank empty
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