duil and eydes

درس حه (3) كروه فيزيكـ دانشگاه رازى

http://www.razi.ac.ir/sahraei

Explicit function:

If y is completely defined in terms of x, y is called an explicit.

$$
y=x^{2}-4 x+2
$$

Implicit function

$$
\begin{gathered}
\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}=\mathbf{2 5} \quad 2 x+2 y \frac{d y}{d x}=0 \quad \Rightarrow \frac{d y}{d x}=-\frac{x}{y} . \\
x^{2}+\mathbf{2 x y}+\mathbf{3} y^{2}=\mathbf{4} \\
2 x+\left(2 x \frac{d y}{d x}+2 y\right)+6 y \frac{d y}{d x}=0 \Rightarrow(2 x+6 y) \frac{d y}{d x}=-2 x-2 y
\end{gathered}
$$

Standard Derivative

Page 15-1b

$$
\begin{aligned}
& y=c x^{2} \quad d y / d x=2 c x \quad \frac{d y}{d x}=\frac{2 x y}{x^{2}}=\frac{2 y}{x} \\
& -\left(\frac{d x}{d y}\right)=\frac{2 y}{x} \quad 2 \int y d y=-\int x d x \quad y^{2}=-\frac{x^{2}}{2}+c \\
& \frac{y^{2}}{c}+\frac{x^{2}}{2 c}=1
\end{aligned}
$$

Page 15-1c

$$
r=2(1+\cos \theta)
$$

$$
\begin{aligned}
& \text { Page 15-3a } \\
& m=\left(\frac{d y}{d x}\right)_{(x, y)}=\operatorname{tg} \theta=-\operatorname{tg} \alpha=-\frac{\mathrm{y}}{\mathrm{x}} \\
& \frac{d y}{d x}=-\frac{y}{x} \\
& \ln y=-\ln x+\ln c
\end{aligned}
$$

$x y=c \quad$ Hyperbola family

$$
\begin{aligned}
& \text { Page 15-3b } \\
& \operatorname{tg} \alpha=\frac{y}{1}=-\operatorname{tg} \theta=-\left(-\frac{d x}{d y}\right) \\
& y d y=d x \rightarrow y^{2}=2 x+c \\
& \text { c) } \operatorname{tg} \alpha=\frac{y}{1}=\frac{d y}{d x} \rightarrow y=c e^{x}
\end{aligned}
$$

d) $\psi=\theta$

The angle between the tangent and radial line at the point (r, θ) is

$$
\operatorname{tg} \psi=\frac{d y}{d x}=\frac{r d \theta}{d r}
$$

$$
\psi=\theta \rightarrow \operatorname{tg} \theta=\frac{r d \theta}{d r}
$$

$$
r=c \sin \theta
$$

$r d \theta$
e) $\psi=c \rightarrow \frac{r d}{d r}=c$

Page 20-5: Newton's Law of Cooling

The rate of cooling of an object is directly proportional to the temperature difference between the object and its surroundings.

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

The Problem
If an object takes 40 minutes to cool from 30 degrees to 24 degrees in a 20 degree room, how long will it take the object to cool to 21 degrees?

Solving the Differential Equation

$$
\begin{gathered}
\frac{d T}{d t}=k(T-20) \Rightarrow \frac{d T}{T-20}=k d t \Rightarrow \\
\int \frac{d T}{T-20}=\int k d t \Rightarrow \ln (T-20)=k t+c \Rightarrow \\
T-20=e^{(k t+c)}=c^{\prime} e^{k t} \Rightarrow \\
T=20+c^{\prime} e^{k t}
\end{gathered}
$$

$$
\begin{gathered}
c^{\prime}=? \\
T(0)=20+c^{\prime} e^{k \times 0}=20+c^{\prime}
\end{gathered}
$$

So c^{\prime} is the difference between the initial temperature of the cooling body and the surrounding room.

Since the initial temperature of the body is 30 degrees, we have

$$
c^{\prime}=30-20=10
$$

$$
T=20+10 e^{k t} \quad \boldsymbol{K}=\boldsymbol{?}
$$

Since it takes 40 minutes for the body to cool from $\mathbf{3 0}$ degrees to 24 degrees we have

$$
\begin{gathered}
T(40)=24=20+10 e^{40 k} \Rightarrow 4=10 e^{40 k} \Rightarrow \\
\ln (4)=\ln \left(10 e^{40 k}\right)=\ln (10)+\ln \left(e^{40 k}\right) \\
\ln (4)-\ln (10)=\ln \left(e^{40 k}\right) \\
\ln (2 / 5)=40 k \Rightarrow k=\frac{\ln (2 / 5)}{40}=-0.023
\end{gathered}
$$

$$
\begin{gathered}
T=20+10 e^{k t} \quad T=20+10 e^{-0.023 t} \\
\text { How Long to Cool to 21? }
\end{gathered}
$$

We want t when $T=21$ so

$$
\begin{aligned}
& T=21=20+10 e^{-0.023 t} \\
& 1=10 e^{-0.023 t} \Rightarrow 1 / 10=e^{-0.023 t} \\
& \ln (1 / 10)=-0.023 t \\
& t=100.1 \text { min } \\
& \lim _{t \rightarrow \infty} T(t)=\lim _{t \rightarrow \infty}\left(20+10 e^{-0.023 t}\right)=20
\end{aligned}
$$

Page 25-1

$$
\begin{gathered}
\frac{d v}{d t}=g-c v^{2} \quad c=k / m \\
v=f(t) \quad t=0, \quad v=0 \\
m \frac{d v}{d t}=m g-k v^{2} \rightarrow \frac{d v}{d t}=-\frac{k}{m}\left(v^{2}-\frac{g m}{k}\right) \\
b^{2}=\frac{m g}{k} \quad \frac{d v}{d t}=-c\left(v^{2}-b^{2}\right) \\
\frac{d v}{v^{2}-b^{2}}=-c d t
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{v^{2}-b^{2}}=\frac{1}{2 b}\left(\frac{1}{v-b}-\frac{1}{v+b}\right) \\
\int \frac{d v}{v^{2}-b^{2}}=\frac{1}{2 b} \int \frac{d v}{v-b}-\frac{1}{2 b} \int \frac{d v}{v+b}=-\int \frac{k}{m} d t \\
=\frac{1}{2 b} \ln (v-b)-\frac{1}{2 b} \ln (v+b)=-\frac{k}{m} t+c^{\prime} \\
=\frac{1}{2 b} \ln \frac{v-b}{v+b}=-\frac{k}{m} t+c^{\prime}
\end{gathered}
$$

$$
\begin{gathered}
\frac{v-b}{v+b}=c e^{-\frac{2 k b}{m} t} \quad c=e^{2 c^{\prime} b} \\
v-b=(v+b) c e^{-\frac{2 k b}{m} t} \\
v\left(1-c e^{-\frac{2 k b}{m} t}\right)=b\left(1+c e^{-\frac{2 k b}{m} t}\right) \\
v(t)=b \frac{1+c e^{-p t}}{1-c e^{-p t}} \quad v(0)=0=b \frac{1+c}{1-c}
\end{gathered}
$$

$$
\begin{gathered}
c=-1 \quad v(t)=b \frac{1+c e^{-p t}}{1-c e^{-p t}} \\
v(t)=b \frac{1-e^{-p t}}{1+e^{-p t}} v(t)=\sqrt{\frac{m g}{k}} \frac{1-e^{-2 \sqrt{\frac{k g}{m}} t}}{1+e^{-2 \sqrt{\frac{k g}{m}} t}} \\
v_{t}=\lim _{t \rightarrow \infty} v(t)=\sqrt{\frac{m g}{k}}
\end{gathered}
$$

Page 35-3: Mixing problem

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at the rate of $25 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half an hour?

$y(t)$: the amount of salt (in kilograms) after t minutes. $y(0)=20 \quad$ and we want to find $y(30)$.

Note that $d y / d t$ is the rate of change in the amount of salt

$$
\begin{aligned}
d y / d t & =\text { Salt inflow rate }- \text { Salt outflow rate } \\
\text { rate in } & =(0.03 \mathrm{~kg} / \mathrm{L})(25 \mathrm{~L} / \mathrm{min})=0.75 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

The tank always contains 5000 L of liquid, so the concentration at time t is $y(t) / 5000(\mathrm{~kg} / \mathrm{L})$.

Since the brine flows out at a rate of $25 \mathrm{~L} / \mathrm{min}$
rate out $=(y(t) / 5000 \mathrm{~kg} / \mathrm{L})(25 \mathrm{~L} / \mathrm{min})=[y(t) / 200] \mathrm{kg} / \mathrm{min}$
dy/dt $=$ Salt inflow rate - Salt outflow rate

$$
\begin{gathered}
\frac{d y}{d t}=0.75-\frac{y(t)}{200}=\frac{150-y(t)}{200} \\
\int \frac{d y}{150-y}=\int \frac{d t}{200} \quad-\ln |150-y|=\frac{t}{200}+c
\end{gathered}
$$

Since $y(0)=20 \quad \Longrightarrow \quad-\ln 130=c$

$$
\begin{gathered}
-\ln |150-y|=\frac{t}{200}-\ln 130 \\
150-y=130 e^{-t / 200}
\end{gathered}
$$

$$
\begin{gathered}
y(t)=150-130 e^{-\frac{t}{200}} . \\
\text { The amount of salt after } 30 \mathrm{~min} \text { is } \\
y(30)=150-130 e^{-\frac{30}{200}} \approx 38.1 \mathrm{~kg} .
\end{gathered}
$$

Page 35-7: Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a cylindrical tank with a hole at the bottom. You are asked to find the height of the water in the tank at any time if the tank has diameter 2 m , the hole has diameter 1 cm , and the initial height of the water when the hole is opened is 2.25 m . When will the tank be empty?

[^0]Physical information. Under the influence of gravity the outflowing water has velocity:

$$
v(t)=0.6 \sqrt{2 g h(t)} \quad \text { (Torricelli's law), }
$$

where $h(t)$ is the height of the water above the hole at time t, and g is acceleration of gravity at the surface of the earth.

First we look at the amount of water that is running out of the tank in a time interval dt

To get a D. E. for $h(t)$, we have to consider that the volume V of the water running out in an interval $d t$ is

$d V_{\text {out }}=A \cdot v(t) \cdot d t \quad(\mathbf{A}$ is the area of the hole.)

This volume must be equal to that the water missing in the tank
$-d V_{i n}=B . d h \quad$ (B is the cross-section of the tank)
$-B . d h=A . v(t) . d t$
$\frac{d h}{d t}=-\frac{A}{B} v(t)=-\frac{A}{B} 0.6 \sqrt{2 g h(t)}$
$\frac{d h}{d t}=-26.56 \frac{A}{B} \sqrt{h}$ Means: the change in the water level is proportional to it's square roo

$$
\frac{d h}{\sqrt{h}}=-26.56 \frac{A}{B} d t \quad 2 \sqrt{h}=c^{\prime}-26.56 \frac{A}{B} t
$$

$$
h=(c-13.28 A t / B)^{2}
$$

$$
h_{g}(t)=(c-0.000332 t)^{2}
$$

Use initial values to find particular solution:
The initial height (the initial condition) is $\boldsymbol{h (0)}=\mathbf{2 2 5} \mathrm{cm}$

$$
c^{2}=225 \rightarrow c=15 \quad h_{p}(t)=(15-000332 t)^{2}
$$

$$
h_{p}(t)=(15-000332 t)^{2}
$$

Tank empty

$$
h_{p}(t)=0 \rightarrow t=\frac{15}{0.000332}=45181 s=12.6 h
$$

Water level $h(t)$ in tank

[^0]: Tank

