معادلات ديفر انسيل

درس حهار م

صحرایی گروه فیزیک دانشگاه رازی

http://www.razi.ac.ir/sahraei

Explicit function:

If y is completely defined in terms of x, y is called an $y = x^2 - 4x + 2$ explicit. **Implicit function** $x^2 + y^2 = 25$ $2x + 2y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}.$ $x^2 + 2xy + 3y^2 = 4$

$$2x + (2x\frac{dy}{dx} + 2y) + 6y\frac{dy}{dx} = 0 \implies (2x + 6y)\frac{dy}{dx} = -2x - 2y$$

	y=f(x)	$\frac{df}{df}$
		dx
1	<i>x</i> ^{<i>n</i>}	nx^{n-1}
2	e^{x}	<i>e</i> ^{<i>x</i>}
3	e^{kx}	ke^{kx}
4	a^{x}	$ \begin{array}{c} a^{x} \cdot \ln a \\ \frac{1}{x} \\ 1 \end{array} $
5	ln x	1
		$\frac{1}{x}$
6	$\log_a x$	1
		$\overline{x \cdot \ln a}$
7	$\sin x$	$\cos x$
8	$\cos x$	$-\sin x$
9	tan <i>x</i>	$\sec^2 x$
10	$\cot x$	$-\cos^2 x$
11	sec x	$\sec x \cdot \tan x$
12	cosec x	-cosec $x \cdot \cot x$
13	$\arcsin x (\sin^{-1} x)$	
		$\sqrt{1-x^2}$
14	arccos x	1
		$\frac{1}{\sqrt{1-x^2}}$ $-\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$ $-\frac{1}{1-x^2}$
15	arctan x	1
		$\overline{1+x^2}$
16	arccot x	1
		$-\frac{1}{1+x^2}$
17	$\frac{\sinh x = (e^{x} + e^{-x})/2}{\cosh x = = (e^{x} - e^{-x})/2}$	$\cosh x$
18	$\cosh x = = (e^x - e^{-x})/2$	sinh x

Standard Derivative

0

 \cap

C

Page 15-3b (**x**,**y**) $tg\alpha = \frac{y}{1} = -tg\theta = -(-\frac{dx}{dy})$ $ydy = dx \rightarrow y^2 = 2x + c$ c) $tg\alpha = \frac{y}{1} = \frac{dy}{dx} \rightarrow y = ce^x$

d)
$$\psi = \theta$$

The angle between the tangent and radial line at the point (r, θ) is
 $tg\psi = \frac{dy}{dx} = \frac{rd\theta}{dr}$
 $\psi = \theta \rightarrow tg\theta = \frac{rd\theta}{dr}$
 $r = c\sin\theta$
e) $\psi = c \rightarrow \frac{rd\theta}{dr} = c$

C

Page 20-5: Newton's Law of Cooling

The rate of cooling of an object is directly proportional to the temperature difference between the object and its surroundings.

$$\frac{dT}{dt} = k(T - T_s)$$

The Problem

If an object takes 40 minutes to cool from 30 degrees to 24 degrees in a 20 degree room, how long will it take the object to cool to 21 degrees?

Solving the Differential Equation

 $\frac{dT}{dt} = k(T - 20) \Longrightarrow \frac{dT}{T - 20} = kdt \Longrightarrow$

 $\int \frac{dT}{T-20} = \int k dt \Longrightarrow \ln(T-20) = kt + c \Longrightarrow$

 $T-20 = e^{(kt+c)} = c'e^{kt} \Longrightarrow$

 $T = 20 + c'e^{kt}$

$$T(0) = 20 + c'e^{k \times 0} = 20 + c$$

c'=?

So c' is the difference between the initial temperature of the cooling body and the surrounding room.

Since the initial temperature of the body is 30 degrees, we have

c' = 30 - 20 = 10

$$T = 20 + 10e^{kt} \qquad K=?$$

Since it takes 40 minutes for the body to cool from 30 degrees to 24 degrees we have

$$T(40) = 24 = 20 + 10e^{40k} \Rightarrow 4 = 10e^{40k} \Rightarrow$$
$$\ln(4) = \ln(10e^{40k}) = \ln(10) + \ln(e^{40k})$$
$$\ln(4) - \ln(10) = \ln(e^{40k})$$
$$\ln(2/5) = 40k \Rightarrow k = \frac{\ln(2/5)}{40} = -0.023$$

 $T = 20 + 10e^{kt} \qquad T = 20 + 10e^{-0.023t}$ **How Long to Cool to 21?** We want t when T=21 so $T = 21 = 20 + 10e^{-0.023t}$ $1 = 10e^{-0.023t} \implies 1/10 = e^{-0.023t}$ $\ln(1/10) = -0.023t$ 20 $t = 100.1 \,\mathrm{min}$ $\lim T(t) = \lim \left(20 + 10e^{-0.023t}\right) = 20$ $t \rightarrow \infty$ $t \rightarrow \infty$

$$\frac{1}{v^{2}-b^{2}} = \frac{1}{2b} \left(\frac{1}{v-b} - \frac{1}{v+b}\right)$$
$$\int \frac{dv}{v^{2}-b^{2}} = \frac{1}{2b} \int \frac{dv}{v-b} - \frac{1}{2b} \int \frac{dv}{v+b} = -\int \frac{k}{m} dt$$
$$= \frac{1}{2b} \ln(v-b) - \frac{1}{2b} \ln(v+b) = -\frac{k}{m} t + c'$$
$$= \frac{1}{2b} \ln \frac{v-b}{v+b} = -\frac{k}{m} t + c'$$

C

$$\frac{v-b}{v+b} = ce^{-\frac{2kb}{m}t} \quad c = e^{2c'b}$$

$$v-b = (v+b)ce^{-\frac{2kb}{m}t}$$

$$v(1-ce^{-\frac{2kb}{m}t}) = b(1+ce^{-\frac{2kb}{m}t})$$

$$v(t) = b\frac{1+ce^{-pt}}{1-ce^{-pt}} \quad v(0) = 0 = b\frac{1+c}{1-c}$$

$$c = -1 \qquad v(t) = b \frac{1 + ce^{-pt}}{1 - ce^{-pt}}$$
$$v(t) = b \frac{1 - e^{-pt}}{1 + e^{-pt}} \quad v(t) = \sqrt{\frac{mg}{k}} \frac{1 - e^{-2\sqrt{\frac{kg}{m}}}}{1 + e^{-2\sqrt{\frac{kg}{m}}}}$$
$$v_t = \lim_{t \to \infty} v(t) = \sqrt{\frac{mg}{k}}$$

C

C

Page 35-3: Mixing problem

A tank contains 20kg of salt dissolved in 5000L of water. Brine that contains 0.03kg of salt per liter of water enters the tank at the rate of 25L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half an hour?

y(t): the amount of salt (in kilograms) after t minutes.y(0) = 20and we want to find y(30).

Note that *dy/dt* is the rate of change in the amount of salt

dy/dt = Salt inflow rate – Salt outflow rate

rate in = (0.03kg/L)(25L/min) = 0.75 kg/min

The tank always contains 5000L of liquid, so the concentration at time *t* is y(t)/5000 (kg/L).

Since the brine flows out at a rate of 25L/min

rate out = (y(t)/5000 kg/L)(25 L/min) = [y(t)/200]kg/min

 $y(t) = 150 - 130e^{-200}$.

The amount of salt after 30 min is

 $y(30) = 150 - 130e^{-\frac{30}{200}} \approx 38.1$ kg.

Page 35-7: Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a cylindrical tank with a hole at the bottom. You are asked to find the height of the water in the tank at any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity:

 $v(t) = 0.6\sqrt{2gh(t)}$ (Torricelli's law),

where h(t) is the height of the water above the hole at time *t*, and *g* is acceleration of gravity at the surface of the earth.

First we look at the amount of water that is running <u>out of</u> <u>the tank</u> in a time interval dt

To get a D. E. for h(t), we have to consider that the volume V of the water running out in an interval dt is

 $dV_{out} = A.v(t).dt$ (A is the area of the hole.) This volume must be equal to that the water missing in the tank $-dV_{in} = B.dh$ (**B** is the cross-section of the tank) -B.dh = A.v(t).dt $\frac{dh}{dt} = -\frac{A}{R}v(t) = -\frac{A}{R}0.6\sqrt{2gh(t)}$ dt $\frac{dh}{dt} = -26.56 \frac{A}{B} \sqrt{h}$ Means: the change in the water level is proportional to it's square root!

$$\frac{dh}{\sqrt{h}} = -26.56 \frac{A}{B} dt \qquad 2\sqrt{h} = c' - 26.56 \frac{A}{B} t$$
$$h = (c - 13.28At / B)^{2}$$
$$h_{g}(t) = (c - 0.000332t)^{2}$$

Use initial values to find particular solution:

The initial height (the initial condition) is h(0) = 225 cm

 $c^2 = 225 \rightarrow c = 15$ $h_p(t) = (15 - 000332t)^2$

 $h_p(t) = (15 - 000332t)^2$

Tank empty

Water level h(t) in tank

TETSETJETEEET

