

Review of Lesson 1

- Differential Equations Definition
- Applications of differential equations

$$
\frac{d y}{d t}=k y(t)
$$

- Types of differential equations
- Odinary Differential Equations

$$
\begin{gathered}
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}=0 \\
m \frac{d^{2} x}{d t^{2}}=-k x \\
y^{\prime \prime}+x y^{2}(d y / d x)^{3}=e^{x} \\
\frac{d y}{d x}=a(x) y+b(x)
\end{gathered}
$$

- Partial Differential Equations
- Order of a Differential Equation
- Degree of a Differential Equation
- Linear Differential Equation
- Nonlinear Differential Equation
- Homogeneous Nonhomogeneous Differential $\frac{d P}{d t}=k\left(1-\frac{P}{N}\right) P$ Equation

General Remarks on Solutions

Does a differential equation have a solution?

$$
\begin{array}{cl}
F\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0 & \\
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0 & \rightarrow y=y\left(x, c_{1}, c_{2}, \ldots, c_{n}\right) \\
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 & \rightarrow y=y\left(x, c_{1}, c_{2}\right) \\
F\left(x, y, y^{\prime}\right)=0 & \rightarrow y=y(x, c)
\end{array}
$$

General Solution: Solutions obtained from integrating the differential equations are called general solutions. The general solution of a order ordinary differential equation contains arbitrary constants resulting from integrating times.

$$
\begin{gathered}
\frac{d v}{d t}=2 t+4 \quad d v=(2 t+4) d t \\
\int d v=\int(2 t+4) d t \quad v+c_{1}=t^{2}+4 t+c_{2} \\
v_{g}=t^{2}+4 t+c \quad \text { General Solution }
\end{gathered}
$$

\mathbf{C} is arbitrary constants

Particular Solution: Particular solutions are the solutions obtained by assigning specific values to the arbitrary constants in the general solutions.

$$
v_{g}=t^{2}+4 t+c
$$

Initial Condition $t=0, v=0 \rightarrow c=0$

$$
\begin{aligned}
& t=0, v=2 m / s \rightarrow c=2 m / s \\
& v_{p}=t^{2}+4 t+2
\end{aligned}
$$

Initial Condition: Constrains that are specified at the initial point, generally time point, are called initial conditions. Problems with specified initial conditions are called initial value problems.

Conditions

- Boundary Condition: Constrains that are specified at the boundary points, generally space points, are called boundary conditions. Problems with specified boundary conditions are called boundary value problems.

Example

$$
\begin{aligned}
& y^{\prime \prime}-5 y^{\prime}+6 y=0 \\
& y_{g}=c_{1} e^{2 x}+c_{2} e^{3 x} \quad y_{p}=e^{2 x} \\
& y^{\prime}=2 e^{2 x}, \quad y^{\prime \prime}=4 e^{2 x} \\
& 4 e^{2 x}-10 e^{2 x}+6 e^{2 x}=0
\end{aligned}
$$

Integral Curves and Differential Equations

$$
F\left(x, y, \frac{d y}{d x}\right)=0 \quad \frac{d y}{d x}=f(x, y)
$$

The geometric meaning of a solution
If this function $f(x, y)$ is continuous throughout some region
R in the $x-y$ plane, we can represent a solution of the form

$$
\left(\frac{d y}{d x}\right)_{p_{0}}=f\left(x_{0}, y_{0}\right)
$$

for a point p_{0} within the region \mathbf{R}. This solution determines a direction (the tangent of the solution at the point). We can choose another point p_{1} within the region near p_{0} such that

$$
\left(\frac{d y}{d x}\right)_{p_{1}}=f\left(x_{1}, y_{1}\right)
$$

We can continue this process until we get something that looks like this.

We could link these points by line segments so that we get a broken curve.

If we bring the points closer and closer together we will eventually get a smooth curve. If we think about this long enough we will see that if we start at a different initial point, we will get a different curve. In this way the solution of a differential equation in general will produce a family of curves dependent upon the initial point. Such a curve is called an integral curve since the process of solving a differential equation usually involves integration. The initial point is, in part, determined by the value of the constant c discussed earlier. Such a constant is called a parameter.

Picard's Theorem: If $f(x, y)$ and $\partial f / \partial y$ are continuous functions on a closed regio R , then through each point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the interior of the region there will pass a unique integral curve of the differential equation $d y / d x=f(x, y)$.

Problems pages 8,9

Families of Curves. Orthogonal Trajectories

$$
y=m x \quad y^{2}+x^{2}=c^{2}
$$

Note that the first family describes all the lines passing by the origin $(0,0)$ while the second the family describes all the circles centered at the origin (including the limit case when the radius 0 which reduces to the single point $(0,0)$) (see the pictures below).

In this page, we will only use the variables x and y. Any family of curves will be written as

$$
f(x, y, c)=0
$$

One may ask whether any family of curves may be generated from a differential equation? In general, the answer is no. Let us see how to proceed if the answer were to be yes. First differentiate with respect to x, and get a new equation involving in general x, y, $d y / d x$, and C. Using the original equation, we may able to eliminate the parameter C from the new equation.

```
                روش بدست آوردن مسبر هاى قائم يک دستهه منحنى 
```

$$
y^{2}+x^{2}=c^{2}
$$

1- تثككيل معادله ديفرانسيل مسير اصلى

$$
2 y \frac{d y}{d x}+2 x=0
$$

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

2- بجاى

$$
-\frac{1}{d y / d x}=-\frac{x}{y}
$$

3- معادله ديفرانسيل مسير قائم را حل مى كنيم

$$
\frac{d y}{y}=\frac{d x}{x} \quad \begin{gathered}
\ln y=\ln x+\ln m \\
y
\end{gathered}=m x
$$

Example: Find the orthogonal family to the family of circles

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}=2 c \\
& 2 x+2 y \frac{d y}{d x}=\frac{x^{2}+y^{2}}{x} \\
& x^{2}+2 x y \frac{d y}{d x}=y^{2} \\
& \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}
\end{aligned}
$$

$$
x^{2}+y^{2}=2 c x
$$

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}
$$

$$
\frac{d y}{d x} \rightarrow-\frac{1}{d y / d x}
$$

$$
\frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}}
$$

Converting between polar and Cartesian coordinates

The two polar coordinates r and θ can be converted to the Cartesian coordinates x and y by using the trigonometric functions sine and cosine:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

while the two Cartesian coordinates x and y can be converted to polar coordinate r by

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\operatorname{tg}^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

$$
\begin{gathered}
\psi+\varphi=\frac{\pi}{2} \\
\operatorname{tg} \psi=\cot \varphi=\frac{r d \theta}{d r}
\end{gathered}
$$

The angle between the tangent and radial line at the point (r, θ) is

$$
\begin{aligned}
\operatorname{tg} \psi & =\frac{d y}{d x}=\frac{r d \theta}{d r} \\
\frac{d y}{d x} & =\frac{-1}{r d \theta / d r}
\end{aligned}
$$

$$
\left.\begin{array}{l}
x^{2}+y^{2}=2 c x \\
r^{2} \cos ^{2} \theta+r^{2} \sin \theta=2 c r \cos \theta \\
r=2 c \cos \theta
\end{array} \frac{d r}{d \theta}=-2 c \sin \theta\right)=-\frac{r}{\cos \theta} \sin \theta \quad \frac{r d \theta}{d r}=-\frac{\cos \theta}{\sin \theta}{ }_{\frac{d r}{d \theta}=-\frac{d r}{r}=\frac{\cos \theta d \theta}{\sin \theta}}^{\frac{r d \theta}{d r}=\frac{\sin \theta}{\cos \theta}} \begin{array}{lc}
\ln r=\ln \sin +\ln c & r=c \sin \theta
\end{array}
$$

Problems page 15

Linear Equation Applications

Growth, Decay and Chemical Reaction

$$
-\frac{d x}{d t}=k x \quad, \quad \mathrm{k}>0 \quad \frac{d x}{x}=-k d t
$$

$\ln x=-k t+c$

$$
t=o \text { when } \quad x=x_{0} \quad \rightarrow c=\ln x_{0}
$$

$\ln x=-k t+\ln x_{0}$

$$
\ln \frac{x}{x_{0}}=-k t \quad x=x_{0} e^{-k t}
$$

$\frac{x_{0}}{2}=x_{0} e^{-k t}$ $k T=\ln 2$

Problems page 19, 20

Thanks For Your Atiention

