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Legendre Equation
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since p(x) = -2x/(1 – x2) and  

q(x) = p (p+ 1)/(1 – x2) are analytic at  x0 = 0.  

Also, p and q have singular points at x0 = 1.
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P is a constant

Thus x0 = 0 is an ordinary point,
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Just as in the previous example, this recursion formula enable us 

to express an in terms of a0 or a1 according as n is even or odd:
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And so on. By inserting these coefficients into the assumed 

solution, we obtain.
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The function defined by * are called Legendre functions.



(c) When p is an odd integer, y2(x) has finite number of terms 

and y1(x) is a series.

y1(x) when p is an even integer and y2(x) when n is an odd 

integer are called the Legendre polynomials (denoted by Pn(x)).

a) When p is not an integer, both the two solutions have infinite 

number of terms. 

(b) When p is an even integer, y1(x) has finite number of terms 

and y2(x)is a series.   
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  The Legendre Polynomials pn(x) can be expressed by Rodrigues'    

  formula. It provides a relatively easy method for computing the 

successive Legendre polynomials, of which first few are:
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If n is even we only have 

even powers of x, and only 

odd powers if n is odd





180

Interval:  x  [−1, 1]

Legendre polynomials 



Some useful properties:
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Orthogonality: The most important property of the Legendre 

polynomials is the fact that 11  x
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Show the following polynomials in terms of the Legendre polynomials
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P(x) and Q(x) are analytic at the x0 and therefore have power 

series expansions. In these cases x0 is called ordinary point of 

equation.
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Equation also is 

analytic

Singular points



Singular points are regular or irregular

A singular point x0 of equation * is said to be regular if the function 

(x-x0)P(x) and (x-x0)
2Q(x) are analytic, and irregular otherwise.

If x0 is an ordinary point, then p and q are analytic and have 
derivatives of all orders at x0, and this enables us to solve for an in 
the solution expansion y(x) =  an(x - x0)

n.  
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We recall that a point x0 is a singular point of the differential 

equation

if one or the other (or both) of the coefficient functions P(x) 

and Q(x) fails to be analytic at x0. 
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Example: Consider the Legendre equation

It is clear that x=1 and x=-1 are singular points. The first is 

regular because
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are analytic at x=1, and second is also regular.
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Differential Equation Solution about regular singular point

If x=0 is a regular singular point and differential equations is 

solved by the Frobenius method.
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Frobenius Method to solve the second-order ODEs having 

coefficients being not analytic.
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where x0=0 is  a regular singular point and the exponent m may be a 

negative integer, a fraction, or even an irrational real number.



Euler Equations

A relatively simple differential equation that has a regular singular 

point is the Euler equation,

02  yqyxpyx where p, q are constants.

Note that x0 = 0 is a regular singular point. 

The solution of the Euler equation is typical of the solutions of all 

differential equations with regular singular points,



Series Solutions Near a Regular Singular Point

We now consider solving the general second order linear 

equation in the neighborhood of a regular singular point 

x0. For convenience, will will take x0 = 0.
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Recall that the point x0 = 0 is a regular singular point of
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multiplying by x2, we obtain
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then our differential equation reduces to the Euler Equation 
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In any case, our equation is similar to an Euler Equation but with 

power series coefficients. 

Thus our solution method: assume solutions have the form
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Example :  Regular Singular Point
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Since the coefficients are polynomials, it follows that x = 0 is a 

regular singular point, since both limits below are finite:
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Now xp(x) = -1/2 and x2q(x) = (1 + x )/2, and thus for
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Thus the corresponding Euler Equation is
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By substitution, our differential equation becomes
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The equation is called the indicial equation, and was obtained earlier 

when we examined the corresponding Euler Equation.

The roots m1 = 1, m2 =1/2, of the indicial equation are called the 

exponents of the singularity, for regular singular point x = 0.

The exponents of the singularity determine the qualitative behavior 

of solution in neighborhood of regular singular point.  
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Starting with m1 = 1, this recursion becomes
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Hence for x > 0, one solution to our differential equation is
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Thus if we omit a0, one solution of our differential equation is

To determine the radius of convergence, use the ratio test:
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Thus the radius of convergence is infinite, and hence the series converges for all x.  
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When m1 = 1/2, this recursion becomes
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Hence for x > 0, a second solution to our equation is
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Thus if we omit a0, the second solution is
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Radius of Convergence for Second Solution

Thus the radius of convergence is infinite, and hence the series converges 
for all x.  
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To determine the radius of convergence for this series, we can use the ratio test:
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General Solution

Since the leading terms of y1 and y2 are x and x1/2, respectively,      

it follows that y1 and y2 are linearly independent, and hence 

form a fundamental set of solutions for differential 

equation.
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The two solutions to our differential equation are 
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