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Page 172-5 Find a series solution of Airy’s equation about x0 = 0: 
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Substituting these 

expressions into the 

equation, we obtain
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For this equation to be valid for all x, the coefficient of each power of x

must be zero; hence a2 = 0 and
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We have a2 = 0 and
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The hardest part, as usual, is to recognize the patterns 

evolving; in this case we have to consider three cases: 

1) All the terms  a2,a5,a8,…are equal to zero. We can write 

this in compact form as 

.0,1,2,3,..n      ,023 na

2) All the terms a3,a6,a9,…are multiples of a0. We can be 

more precise: 
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3) All the terms  a4,a7,a10,…are multiples of a1. We can be 

more precise: 
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where a0, a1 are arbitrary (determined by initial conditions).

Consider the two cases 

(1)  a0 =1,  a1 = 0    y(0) = 1, y'(0) = 0

(2)  a0 =0,  a1 = 1    y(0) = 0, y'(0) = 1

The corresponding solutions y1(x), y2(x) are linearly 

independent, since W(y1, y2)(0) =1  0, where
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the corresponding solutions y1(x), y2(x) are linearly

independent, and thus are fundamental solutions for Airy’s

equation, with general solution  

y (x) = c1 y1(x) + c1 y2(x)



Thus given the initial conditions 

y(0) = a0,         y'(0) = a1

the solutions are, respectively,
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Thus every point x is an ordinary point.  We will take x0 = 1. 

Assuming a series solution and differentiating, we obtain
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Find a series solution of Airy’s equation about x0 = 1:

Substituting these into ODE & shifting indices, we obtain
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Our equation is
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The x on right side can be written as 1 + (x – 1); and thus
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Equating like powers of x -1, we obtain
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Thus our equation becomes

Thus the recurrence relation is 
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We now have the following information:
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and determining a general formula for the coefficients an

can be difficult or impossible.

However, we can generate as many coefficients as we like, 

preferably with the help of a computer algebra system.  
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The recursion has three terms,


