

Page 172-5 Find a series solution of Airy's equation about $x_{0}=0$:

$$
y^{\prime \prime}-x y=0
$$

$$
\left.\begin{array}{rl}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}, \quad y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{array} \begin{array}{l}
\text { Substituting these } \\
\text { expressions into the } \\
\text { equation, we obtain }
\end{array}\right\}
$$

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=0 \\
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=0 \\
2 \times 1 \times a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n-1}\right] x^{n}=0
\end{gathered}
$$

For this equation to be valid for all x, the coefficient of each power of x must be zero; hence $a_{2}=0$ and

$$
\begin{aligned}
& a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}, \quad n=1,2,3, \ldots \\
& a_{n+3}=\frac{a_{n}}{(n+3)(n+2)} \quad n=0,1,2,3, \ldots
\end{aligned}
$$

We have $a_{2}=\mathbf{0}$ and $a_{n+3}=\frac{a_{n}}{(n+2)(n+3)} \quad n=0,1,2,3, \ldots$

$$
\begin{aligned}
& n=0 \rightarrow a_{3}=\frac{a_{0}}{2 \times 3}, \quad n=1 \rightarrow a_{4}=\frac{a_{1}}{3 \times 4} \\
& n=2 \rightarrow a_{5}=\frac{a_{2}}{4 \times 5}=0 \\
& n=3 \rightarrow a_{6}=\frac{a_{3}}{5 \times 6}=\frac{a_{0}}{(2 \times 3)(5 \times 6)} \\
& n=4 \rightarrow a_{7}=\frac{a_{4}}{6 \times 7}=\frac{a_{1}}{(3 \times 4)(6 \times 7)} \\
& n=5 \rightarrow a_{8}=\frac{a_{5}}{7 \times 8}=0
\end{aligned}
$$

$$
n=6 \rightarrow a_{9}=\frac{a_{6}}{8 \times 9}=\frac{a_{0}}{(2 \times 3)(5 \times 6)(8 \times 9)}
$$

$$
n=7 \rightarrow a_{10}=\frac{a_{7}}{9 \times 10}=\frac{a_{1}}{(3 \times 4)(6 \times 7)(9 \times 10)}, \cdots
$$

The hardest part, as usual, is to recognize the patterns evolving; in this case we have to consider three cases:

1) All the terms $a_{2}, a_{5}, a_{8}, \ldots$ are equal to zero. We can write this in compact form as

$$
a_{3 n+2}=0, \quad \mathrm{n}=0,1,2,3, \ldots
$$

2) All the terms $a_{3}, a_{6}, a_{9}, \ldots$ are multiples of a_{0}. We can be more precise:

$$
a_{3 n}=\frac{a_{0}}{(2 \times 3)(5 \times 6) \cdots((3 n-1)(3 n))}, n=1,2, \ldots
$$

3) All the terms $\mathbf{a}_{4}, a_{7}, a_{10}, \ldots$ are multiples of a_{1}. We can be more precise:

$$
\begin{aligned}
& a_{3 n+1}=\frac{a_{1}}{(3 \times 4)(6 \times 7) \cdots((3 n)(3 n+1))}, n=1,2, \ldots \\
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+\sum_{n=3}^{\infty} a_{n} x^{n} \\
& y(x)=a_{0}\left[1+\sum_{n=1}^{\infty} \frac{x^{3 n}}{(2 \times 3)(5 \times 6) \cdots((3 n-1)(3 n))}\right]+ \\
& a_{1}\left[x+\sum_{n=1}^{\infty} \frac{x^{3 n+1}}{(3 \times 4)(6 \times 7) \cdots((3 n)(3 n+1))}\right]
\end{aligned}
$$

where a_{0}, a_{1} are arbitrary (determined by initial conditions).
Consider the two cases
(1) $a_{0}=1, a_{1}=0 \Leftrightarrow y(0)=1, y^{\prime}(0)=0$
(2) $a_{0}=0, a_{1}=1 \Leftrightarrow y(0)=0, y^{\prime}(0)=1$

The corresponding solutions $y_{1}(x), y_{2}(x)$ are linearly independent, since $W\left(y_{1}, y_{2}\right)(0)=1 \neq 0$, where
$W\left(y_{1}, y_{2}\right)(0)=\left|\begin{array}{ll}y_{1}(0) & y_{2}(0) \\ y_{1}^{\prime}(0) & y_{2}^{\prime}(0)\end{array}\right|=y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0)=1$
the corresponding solutions $y_{1}(x), y_{2}(x)$ are linearly independent, and thus are fundamental solutions for Airy's equation, with general solution

$$
y(x)=c_{1} y_{1}(x)+c_{1} y_{2}(x)
$$

Thus given the initial conditions

$$
y(0)=\mathrm{a}_{0}, \quad y^{\prime}(0)=\mathbf{a}_{1}
$$

the solutions are, respectively,

$$
\begin{aligned}
& y_{1}(x)=1+\sum_{n=1}^{\infty} \frac{x^{3 n}}{(2 \times 3)(5 \times 6) \cdots((3 n-1)(3 n))}, \\
& y_{2}(x)=x+\sum_{n=1}^{\infty} \frac{x^{3 n+1}}{(3 \times 4)(6 \times 7) \cdots((3 n)(3 n+1))}
\end{aligned}
$$

Find a series solution of Airy's equation about $x_{0}=1$:

$$
y^{\prime \prime}-x y=0,-\infty<x<\infty
$$

Thus every point x is an ordinary point. We will take $x_{0}=1$. Assuming a series solution and differentiating, we obtain

$$
\begin{gathered}
y(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}, \quad y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}
\end{gathered}
$$

Substituting these into ODE \& shifting indices, we obtain

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}=x \sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

Our equation is

The x on right side can be written as $1+(x-1)$; and thus

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}=[1+(x-1)] \sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} a_{n}(x-1)^{n}+\sum_{n=0}^{\infty} a_{n}(x-1)^{n+1} \\
& =\sum_{n=0}^{\infty} a_{n}(x-1)^{n}+\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n}
\end{aligned}
$$

Thus our equation becomes

$2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}=a_{0}+\sum_{n=1}^{\infty} a_{n}(x-1)^{n}+\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n}$ Thus the recurrence relation is

$$
(n+2)(n+1) a_{n+2}=a_{n}+a_{n-1},(n \geq 1)
$$

Equating like powers of $\boldsymbol{x}-\mathbf{1}$, we obtain

$$
\begin{gathered}
2 a_{2}=a_{0} \quad \Rightarrow a_{2}=\frac{a_{0}}{2} \\
n=1 \rightarrow 3 \times 2 a_{3}=a_{1}+a_{0} \Rightarrow a_{3}=\frac{a_{0}}{6}+\frac{a_{1}}{6} \\
=2 \rightarrow 4 \times 3 a_{4}=a_{2}+a_{1} \quad \Rightarrow a_{4}=\frac{a_{0}}{24}+\frac{a_{1}}{12}
\end{gathered}
$$

We now have the following information:

$a_{1}=$ arbitrary

$$
\begin{gathered}
y(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n} a_{3}=\frac{a_{0}}{6}+\frac{a_{1}}{6}, \\
y(x)=a_{0}\left[1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{24}+\cdots a_{4}=\frac{a_{0}}{24}+\frac{a_{1}}{12},\right. \\
\left.+a_{1}\left[(x-1)+\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}+\cdots\right]\right] \\
y(x)=a_{0} y_{3}(x)+a_{1} y_{4}(x)
\end{gathered}
$$

The recursion has three terms,

$$
(n+2)(n+1) a_{n+2}=a_{n}+a_{n-1},(n \geq 1)
$$

and determining a general formula for the coefficients $\boldsymbol{a}_{\boldsymbol{n}}$ can be difficult or impossible.
However, we can generate as many coefficients as we like, preferably with the help of a computer algebra system.

