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Applications of 2" Order Linear
Vibrations in Mechanical Systems

How can we obtain the motion of the
body, say, the displacement

X(t) as function of time t? Now this
motion iIs determined by
Newton’s second law 9
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Simple harmonic vibration




Simple harmonic motion is the motion of a simple harmonic
oscillator, a motion that is neither driven nor damped. The
motion is periodic, as it repeats itself at standard intervals in a
specific manner - described as being sinusoidal, with constant
amplitude.
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Vibrations in Mechanical Systems

Damping vibrations: If a frictional force (damping) proportional to

the velocity is also present, the harmonic oscillator is described as a

damped oscillator.

In such situation, the frequency of the oscillations is smaller than in

the non-damped case, and the amplitude of the oscillations decreases
with time. c is called the damping constant.
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It is now most interesting that depending on the amount of damping (much,
medium, or little) there will be three types of motion corresponding to the three
cases.
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Case 1) b%-a2>0 Overdamping

If the damping constant c is so large that c¢? >4M k, then m, and
m, are distinct real roots. In this case the corresponding
general solution of equation is:
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We see that in this case, damping y

. 0
takes out energy so quickly that the
body does not oscillate.
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Case 2) b?=a? Critical Damping
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Critical damping is the border case between nonoscillatory
motions (Case I) and oscillations (Case 111).

critically damped



Case 3) b%-a?<0 Underdamping

This is the most interesting case. It occurs if the damping constant

¢ is so small that ¢2 < 4Mk.
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Damped oscillation in Case 111




Damped Simple Harmonic Motion
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There are three mathematically distinct regimes
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Forced vibrations

The vibrations discussed earlier are called free vibrations because all the forces
that affect the motion of the system are internal to the system. We extend our
analysis to cover the case in which an external force acts on the mass.

If an external time-dependent force Is present, the harmonic
oscillator is described as a driven oscillator.
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The solution to the driven harmonic oscillator has a transient and a
steady-state part. The transient solution is the solution to the
homogeneous differential equation of motion which has been
combined with the particular solution and forced to fit the physical
boundary conditions of the problem at hand. The form of this
transient solution is that of the undriven damped oscillator and as
such can be underdamped, overdamped, or critically damped.
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Driven SHM with Resistance

1 Apply a sinusoidal force, F, cos (wt), and now consider
what A and c do,
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Forced Vibrations: Resonance
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