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Vibrations in Mechanical Systems
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How can we obtain the motion of the 

body, say, the displacement 

x(t) as function of time t? Now this 

motion is determined by 

Newton’s second law
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Applications of 2nd Order Linear
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Simple harmonic vibration



Simple harmonic motion is the motion of a simple harmonic 

oscillator, a motion that is neither driven nor damped. The 

motion is periodic, as it repeats itself at standard intervals in a 

specific manner - described as being sinusoidal, with constant 

amplitude. 
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Vibrations in Mechanical Systems

Damping vibrations: If a frictional  force (damping) proportional to 

the velocity is also present, the harmonic oscillator is described as a 

damped oscillator. 

In such situation, the frequency of the oscillations is smaller than in 

the non-damped case, and the amplitude of the oscillations decreases 

with time. c is called the damping constant.
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It is now most interesting that depending on the amount of damping (much, 

medium, or little) there will be three types of motion corresponding to the three 

cases.
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If the damping constant c is so large that c2 >4M k, then m1 and 

m2 are distinct real roots. In this case the corresponding 

general solution of equation is:

Case 1) b2-a2>0 Overdamping
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We see that in this case, damping

takes out energy so quickly that the 

body does not oscillate. 
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Case 2) b2=a2 Critical Damping
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Critical damping is the border case between nonoscillatory 

motions (Case I) and oscillations (Case III).

critically damped



Case 3) b2-a2<0 Underdamping

This is the most interesting case. It occurs if the damping constant 

c is so small that c2 < 4Mk. 
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The natural frequency of the system
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Damped oscillation in Case III



Damped Simple Harmonic Motion

There are three mathematically distinct regimes
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Forced vibrations

The vibrations discussed earlier are called free vibrations because all the forces 

that affect the motion of the system are internal to the system. We extend our 

analysis to cover the case in which an external force acts on the mass.

If an external time-dependent force is present, the harmonic 

oscillator is described as a driven oscillator.
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The solution to the driven harmonic oscillator has a transient and a 

steady-state part. The transient solution is the solution to the 

homogeneous differential equation of motion which has been 

combined with the particular solution and forced to fit the physical 

boundary conditions of the problem at hand. The form of this 

transient solution is that of the undriven damped oscillator and as 

such can be underdamped, overdamped, or critically damped. 

http://hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html


Driven SHM with Resistance

Apply a sinusoidal force,  F0 cos (t), and now consider 
what A and c do,
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Forced Vibrations: Resonance
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The natural frequency of 

the system


