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Second Order Linear Equations

A second order differential equation is linear if it 

can be written as:
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If R(x)=0 the equation is homogeneous, otherwise it is 

non homogeneous.
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Solving 2nd Order Linear Equation

Try reducing to first order equations.  

This works for equations of the form:
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What about equations of the form:
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Existence: Does a differential equation have a solution? 

Uniqueness: Does a differential equation have more than 

one solution? If yes, how can we find a solution which 

satisfies particular conditions? 

Existence and Uniqueness of 2nd order equation



Existence and Uniqueness of 2nd order equation

Theorem 1: Let p(x), Q(x) and R(x) be continuous functions on 

a closed interval [a,b], if x0 is any point in [a,b], and if y0 and y′0

are any numbers whatever, then equation
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has one only one solution y(x)  on the interval such that 



Example

Find the largest interval where

(x2 - 1)y'' + 3xy' + cosxy =ex   y(0) = 4, y'(0) = 5

is guaranteed to have a unique solution.

We first put it into standard form

y'' + 3x/(x2 - 1)y' + (cos x)/(x2 - 1) y =ex /(x2 - 1)

y(0) = 4,        y'(0) = 5

P, Q, and R are all continuous except at x = -1 and x = 1.

The theorem tells us that there is a unique solution on [-1,1].
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Suppose that in some way we know that 

Is the genral solution of (2)
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and that yp(x) is a fixed particular solution of (1)

If y(x) is any solution whatever of (1), then an easy calculation 

shows that y(x)-yp(x) is the solution of (2).



(1)   )()()( xRyxQyxpy 

))(())(()( ppp yyxQyyxpyy 

)()( xyxy p

 
 ppp yxQyxpy

yxQyxpy

)()(

)()(





)(),,()( 21 xyccxyxy pg 

This argument proves the following theorem
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Theorem 2: If yg is the general solution of equation (2) and yp is

any particular solution of equation (1), then yg + yp is the general 

solution of (1).

Theorem 3: If y1 (x) and y2 (x) are any two solution of (2), then 
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is also a solution for any constant c1 and c2.
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The solution below is commonly called a linear combination of 

the solutions y1 (x) and y2 (x).  

Theorem 3: any linear combination of two solution of the 

homogeneous equation (2) is also a solution.
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Problems page 83-1

By inspection, find the general solution of
xey 

)(),,()( 21 xyccxyxy pg 

2110 cxcycyy g 

x

p ey 

xecxcy  21



Problem page 83-2a - Find a P.S.
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The general solution of the homogeneous equation

Definition: Two functions y1 and y2 are linearly dependent if 

there exist constants c1 and c2, not both zero, such that
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for all x in [a,b].  Note that this reduces to determining whether 

y1 and y2 are multiples of each other.

If the only solution to this equation is c1 = c2 = 0, then y1 and y2 are 

linearly independent.

Example:              y1(x) = sin2x y2(x) = sinxcosx

This equation is satisfied if we choose c1 = 1, c2 = -2, and hence 

y1 and y2 are linearly dependent. 
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c1 = c2 = 0, then y1 and y2 are linearly independent.

on the interval [a,b] . Then   

is the general solution of equation (1) on [a,b], in the sense that every 

solution of (1) on this interval can be obtained from (2) by a suitable 

choice of the arbitrary constant c1 and c2.
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Theorem 4: Let y1(x) and y2(x) be linearly independent 

solutions of the homogeneous equation



Proof
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We must show that constants c1 and c2 for all x in [a,b] can be 

found so that
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Consider the linear system (in matrix form)     A c = B

nfor
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0),( 212121  yyyyyyW Wronskian of y1 & y2

The Wronskian of two linearly  independent solution of (1) is not identically zero.

If and only if their Wronskian  W(y1,y2) is zero they are linearly dependent .



Lemma 1: If y1(x), y2(x) are  two solution of equation (1) on 

[a,b], then their Wronskian W=W(y1,y2) is either identically 

zero or never zero on [a,b].

Lemma, a proven statement used as a stepping-stone toward the proof of another statement 
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Next, since y1 and y2 are both solutions of (1), we have:
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Since the exponential factor is never zero, the proof is completed.



Lemma 2: If y1(x) and y2(x) are two solution of equation (1) on 

[a,b], then they are linearly dependent on this interval if and only 

if their Wronskian  W(y1,y2)=y1y′2-y2y′1 is identically zero.
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Problems page 87-1: show that ex and e-x are linearly 

independent solution of        on any interval.0 yy
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Example: show that

is general solution of                                       on any interval, and 

find the P.S. for which  y(0)=2  and  y′(0)=3.
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Problems page 87-3: Show that                                             is general  solution of  

On any interval, and find the particular solution for which y(0)=-1 and y′(0)=1. 
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The use of a known solution to find another
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As we have seen , it is easy to write down the general 

solution of the homogeneous equation

Whenever we know two linearly independent solution y1(x) 

and y2(x). But how do we find y1 and y2?
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We assume, then that y2=vy1 is a solution of (1), so that
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by above equation actually are linearly independent as 

claimed;
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Example: y1=x is a solution of

Find G.S.? 02  yyxyx
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