

Chapter 3

Second Order Linear Equations

A second order differential equation is linear if it can be written as:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=R(x) \\
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
\end{gathered}
$$

If $R(x)=0$ the equation is homogeneous, otherwise it is non homogeneous.

Solving $2^{\text {nd }}$ Order Linear Equation

Try reducing to first order equations. This works for equations of the form:

Case 1-Dependent variable missing $\quad f\left(x, y^{\prime}, y^{\prime \prime}\right)=0$

$$
y^{\prime}=p, y^{\prime \prime}=\frac{d p}{d x} \quad f\left(x, p, \frac{d p}{d x}\right)=0
$$

Case 2-Independent variable missing $g\left(y, y^{\prime}, y^{\prime \prime}\right)=0$
$y^{\prime}=p, y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y} \quad g\left(y, p, p \frac{d p}{d y}\right)$

What about equations of the form:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 ?
$$

Existence and Uniqueness of 2nd order equation

Existence: Does a differential equation have a solution?
Uniqueness: Does a differential equation have more than one solution? If yes, how can we find a solution which satisfies particular conditions?

Existence and Uniqueness of 2nd order equation

Theorem 1: Let $p(x), Q(x)$ and $R(x)$ be continuous functions on a closed interval [a,b], if x_{0} is any point in [a,b], and if y_{0} and $\mathrm{y}_{\mathbf{0}}$ are any numbers whatever, then equation

$$
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=R(x)
$$

has one only one solution $\mathrm{y}(\mathrm{x})$ on the interval such that

$$
y\left(x_{0}\right)=y_{0}, \quad \mathrm{y}^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}^{\prime}
$$

Example

Find the largest interval where

$$
\left(x^{2}-1\right) y^{\prime \prime}+3 x y^{\prime}+\cos x y=e^{x} \quad y(0)=4, y^{\prime}(0)=5
$$

is guaranteed to have a unique solution.
We first put it into standard form

$$
\begin{gathered}
y^{\prime \prime}+3 x /\left(x^{2}-1\right) y^{\prime}+(\cos x) /\left(x^{2}-1\right) y=e^{x} /\left(x^{2}-1\right) \\
y(0)=4, \quad y^{\prime}(0)=5
\end{gathered}
$$

P, Q, and R are all continuous except at $x=-1$ and $x=1$.
The theorem tells us that there is a unique solution on $[-1,1]$.

$$
\begin{gathered}
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=R(x) \\
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0
\end{gathered}
$$

Suppose that in some way we know that

$$
y_{g}\left(x, c_{1}, c_{2}\right)
$$

Is the genral solution of (2)
and that $y_{p}(x)$ is a fixed particular solution of (1)
If $\mathbf{y}(\mathbf{x})$ is any solution whatever of (1), then an easy calculation shows that $y(x)-y_{p}(x)$ is the solution of (2).

$$
\begin{gathered}
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=R(x) \\
y(x)-y_{p}(x) \\
\left(y-y_{p}\right)^{\prime \prime}+p(x)\left(y-y_{p}\right)^{\prime}+Q(x)\left(y-y_{p}\right) \\
=\left[y^{\prime \prime}+p(x) y^{\prime}+Q(x) y\right]- \\
{\left[y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}\right]=R(x)-R(x)=0} \\
y(x)=y_{g}\left(x, c_{1}, c_{2}\right)+y_{p}(x)
\end{gathered}
$$

This argument proves the following theorem

Theorem 2: If y_{g} is the general solution of equation (2) and y_{p} is any particular solution of equation (1), then $y_{g}+y_{p}$ is the general solution of (1).

Theorem 3: If $y_{1}(x)$ and $y_{2}(x)$ are any two solution of (2), then

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution for any constant c_{1} and c_{2}.

$$
\begin{aligned}
& y^{\prime}(x)=c_{1} y_{1}^{\prime}(x)+c_{2} y_{2}^{\prime}(x) \\
& y^{\prime \prime}(x)=c_{1} y_{1}^{\prime \prime}(x)+c_{2} y_{2}^{\prime \prime}(x) \\
& y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0
\end{aligned}
$$

$$
\begin{aligned}
& c_{1} y_{1}^{\prime \prime}(x)+c_{2} y_{2}^{\prime \prime}(x)+p(x)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+ \\
& Q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)= \\
& c_{1}\left[y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+Q(x) y_{1}\right]+ \\
& c_{2}\left[y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+Q(x) y_{2}\right] \\
& =c_{1} \times 0+c_{2} \times 0=0
\end{aligned}
$$

The solution below is commonly called a linear combination of the solutions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$.

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Theorem 3: any linear combination of two solution of the homogeneous equation (2) is also a solution.

Problems page 83-1

By inspection, find the general solution of
$y^{\prime \prime}=e^{x}$

$$
\begin{gathered}
y(x)=y_{g}\left(x, c_{1}, c_{2}\right)+y_{p}(x) \\
y^{\prime \prime}=0 \rightarrow y^{\prime}=c_{1} \rightarrow y_{g}=c_{1} x+c_{2} \\
y_{p}=e^{x} \\
y=c_{1} x+c_{2}+e^{x}
\end{gathered}
$$

Problem page 83-2a - Find a P.S.

$$
\begin{gathered}
x^{3} y^{\prime \prime}+x^{2} y^{\prime}+x y=1 \\
x^{3} y^{\prime \prime}=c_{1} \quad x^{2} y^{\prime}=c_{2} \quad x y=c_{3} \\
y=\frac{c_{3}}{x} \rightarrow y^{\prime}=-\frac{c_{3}}{x^{2}} \rightarrow y^{\prime \prime}=\frac{2 c_{3}}{x^{3}} \\
x^{3}\left(\frac{2 c_{3}}{x^{3}}\right)+x^{2}\left(-\frac{c_{3}}{x^{2}}\right)+x\left(\frac{c_{3}}{x}\right)=1 \\
2 c_{3}-c_{3}+c_{3}=1 \rightarrow c_{3}=\frac{1}{2} \quad y=\frac{1}{2 x}
\end{gathered}
$$

The general solution of the homogeneous equation
Definition: Two functions y_{1} and y_{2} are linearly dependent if there exist constants c_{1} and c_{2}, not both zero, such that

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0
$$

for all x in [a,b]. Note that this reduces to determining whether y_{1} and y_{2} are multiples of each other.

If the only solution to this equation is $c_{1}=c_{2}=0$, then y_{1} and y_{2} are linearly independent.
Example: $\quad y_{1}(x)=\sin 2 x \quad y_{2}(x)=\sin x \cos x$
the linear combination

$$
c_{1} \sin 2 x+c_{2} \sin x \cos x=0
$$

This equation is satisfied if we choose $c_{1}=1, c_{2}=-2$, and hence y_{1} and y_{2} are linearly dependent.

$$
\begin{array}{ll}
\text { Example } & y_{1}=x, \quad y_{2}=x^{2} \\
& c_{1} x+c_{2} x^{2}=0
\end{array}
$$

$$
c_{1}=c_{2}=0 \text {, then } y_{1} \text { and } y_{2} \text { are linearly independent. }
$$

Theorem 4: Let $y_{1}(x)$ and $y_{2}(x)$ be linearly independent solutions of the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0 \tag{1}
\end{equation*}
$$

on the interval $[\mathbf{a}, \mathrm{b}]$. Then

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is the general solution of equation (1) on [a,b], in the sense that every solution of (1) on this interval can be obtained from (2) by a suitable choice of the arbitrary constant c_{1} and c_{2}.

Proof

$$
y(x) \text { any solution of (1) on }[a, b]
$$

We must show that constants c_{1} and c_{2} for all x in $[a, b]$ can be found so that

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for some point x_{0} in $[\mathrm{a}, \mathrm{b}]$ we can find c_{1} and c_{2} can be found so that

$$
\begin{aligned}
& c_{1} y_{1}\left(x_{0}\right)+c_{2} y_{2}\left(x_{0}\right)=y\left(x_{0}\right) \\
& c_{1} y_{1}^{\prime}\left(x_{0}\right)+c_{2} y_{2}^{\prime}\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Consider the linear system (in matrix form) $\boldsymbol{A} \boldsymbol{c}=\boldsymbol{B}$

$$
\begin{gathered}
c_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det} A}, \quad \text { for } \mathrm{i}=1, \ldots, n \\
\left(\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
\mathrm{y}_{1}^{\prime}\left(\mathrm{x}_{0}\right) & \mathrm{y}_{2}^{\prime}\left(\mathrm{x}_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y\left(x_{0}\right)}{y^{\prime}\left(x_{0}\right)} \\
c_{1}=\frac{y y_{2}^{\prime}-y^{\prime} y_{2}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \quad c_{2}=\frac{y y_{1}^{\prime}-y^{\prime} y_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \\
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \neq 0 \text { Wronskian of } \mathrm{y}_{1} \& \mathrm{y}_{2}
\end{gathered}
$$

The Wronskian of two linearly independent solution of (1) is not identically zero.
If and only if their Wronskian $W\left(y_{1}, y_{2}\right)$ is zero they are linearly dependent.

Lemma 1: If $y_{1}(x), y_{2}(x)$ are two solution of equation (1) on $[\mathrm{a}, \mathrm{b}]$, then their Wronskian $W=W\left(y_{1}, y_{2}\right)$ is either identically zero or never zero on [a,b].

Lemma, a proven statement used as a stepping-stone toward the proof of another statement

PROOF

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

$$
W^{\prime}\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime \prime}+y_{1}^{\prime} y_{2}^{\prime}-y_{1}^{\prime \prime} y_{2}-y_{1}^{\prime} y_{2}^{\prime}
$$

$$
=y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
$$

Next, since y_{1} and y_{2} are both solutions of (1), we have:

$$
\begin{gather*}
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0 \tag{1}\\
y_{1}^{\prime \prime}+p y_{1}^{\prime}+Q y_{1}=0, y_{2}^{\prime \prime}+p y_{2}^{\prime}+Q y_{2}=0
\end{gather*}
$$

$$
\begin{gathered}
y_{2}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+Q y_{1}\right)=0 \\
y_{1}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+Q y_{2}\right)=0 \\
(2)-(1) \rightarrow\left(y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}\right)+P\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)=0 \\
\frac{d W}{d x}+P W=0 \quad \frac{d W}{W}=-P(x) d x \\
\ln W=-\int P(x) d x+c \\
W=e^{-\int P(x) d x+c}=C e^{-\int P(x) d x} \text { G.S. }
\end{gathered}
$$

Since the exponential factor is never zero, the proof is completed.

Lemma 2: If $y_{1}(x)$ and $y_{2}(x)$ are two solution of equation (1) on [abb], then they are linearly dependent on this interval if and only if their Wronskian $W\left(y_{1} y_{2}\right)=y_{1} y^{\prime}{ }_{2} y_{2} y_{1}^{\prime}$ is identically zero.

$$
\begin{aligned}
& \text { PROOF } \quad y_{2}=c y_{1} \rightarrow y_{2}^{\prime}=c y_{1}^{\prime} \\
& W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=y_{1} c y_{1}^{\prime}-y_{1}^{\prime} c y_{1}=0
\end{aligned}
$$

Since the Wronskian is identically zero on [abb], we can divided it by $\mathrm{y}_{1}{ }^{2}$ to get:

$$
\begin{aligned}
\frac{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}{y_{1}^{2}}=0 & \rightarrow\left(y_{2} / y_{1}\right)^{\prime}=0 \\
\frac{y_{2}}{2}=k & \rightarrow y_{2}(x)=k y_{1}(x)
\end{aligned}
$$

Problems page 87-1: show that e^{x} and e^{-x} are linearly independent solution of $y^{\prime \prime}-y=0$ on any interval.

$$
\begin{gathered}
y_{1}=e^{x} \rightarrow y_{1}^{\prime}=e^{x} \rightarrow y_{1}^{\prime \prime}=e^{x} \\
y_{1}^{\prime \prime}-y_{1}=e^{x}-e^{x}=0 \\
y_{2}=e^{-x} \rightarrow y_{2}^{\prime}=-e^{-x} \rightarrow y_{2}^{\prime \prime}=e^{-x} \\
y_{2}^{\prime \prime}-y_{2}=e^{-x}-e^{-x}=0 \quad \frac{y_{1}}{y_{2}}=e^{2 x} \neq k \\
W\left(y_{1}, y_{2}\right)=\left|e^{x} e^{-x}\right|=-e^{x} e^{-x}-e^{x} e^{-x}=-2
\end{gathered}
$$

Example: show that $\quad y=c_{1} \sin x+c_{2} \cos x$ is general solution of $\quad y^{\prime \prime}+y=0 \quad$ on any interval, and find the P.S. for which $y(0)=2$ and $y^{\prime}(0)=3$.
$y_{1}=\sin x, \quad y_{2}=\cos x \rightarrow y_{1} / y_{2}=\operatorname{tg} x \rightarrow W \neq 0$

$$
y_{1}^{\prime \prime}+y_{1}=0 \quad y_{2}^{\prime \prime}+y_{2}=0
$$

$W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}\sin x & \cos x \\ \cos x & -\sin x\end{array}\right|=-\sin ^{2} x-\cos ^{2} x=-1$ $c_{1} \sin 0+c_{2} \cos 0=2$

$$
\Rightarrow y=3 \sin x+2 \cos x
$$

Problems page 87-3: Show that $y=c_{1} e^{x}+c_{2} e^{2 x}$ is general solution of

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

On any interval, and find the particular solution for which $y(0)=-1$ and $y^{\prime}(0)=1$.

$$
\begin{gathered}
y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}, \quad y^{\prime \prime}=c_{1} e^{x}+4 c_{2} e^{2 x} \\
c_{1} e^{x}+4 c_{2} e^{2 x}-3\left(c_{1} e^{x}+2 c_{2} e^{2 x}\right)+2\left(c_{1} e^{x}+c_{2} e^{2 x}\right)= \\
=c_{1} e^{x}+4 c_{2} e^{2 x}-3 c_{1} e^{x}-6 c_{2} e^{2 x}+2 c_{1} e^{x}+2 c_{2} e^{2 x}=0
\end{gathered}
$$

$$
\begin{aligned}
& y_{1}=e^{x}, y_{2}=e^{2 x} \quad y_{1}^{\prime}=e^{x}, y_{2}^{\prime}=2 e^{2 x} \\
& W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{x} & e^{2 x} \\
e^{x} & 2 e^{2 x}
\end{array}\right|=2 e^{3 x}-e^{3 x}=e^{3 x} \\
& y=c_{1} e^{x}+c_{2} e^{2 x} \\
& y(0)=-1 \rightarrow c_{1}+c_{2}=-1 \quad c_{1}=-3 \\
& y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x} \quad c_{2}=2 \\
& y^{\prime}(0)=1 \rightarrow c_{1}+2 c_{2}=1 \quad y=-3 e^{x}+2 e^{2 x}
\end{aligned}
$$

The use of a known solution to find another

As we have seen , it is easy to write down the general solution of the homogeneous equation

$$
y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0
$$

Whenever we know two linearly independent solution $\mathrm{y}_{1}(\mathrm{x})$ and $y_{2}(x)$. But how do we find y_{1} and y_{2} ?
$y_{1}(x) \rightarrow$ is a known nonzero solution
$c y_{1}(x) \rightarrow$ is also so lution for any constant c
$v(x)$ an unknown function $\rightarrow c$

$$
y_{2}=v y_{1} \text { will be solution of (1) }
$$

We assume, then that $y_{2}=y y_{1}$ is a solution of (1), so that

$$
\begin{gathered}
y_{2}^{\prime \prime}+P y_{2}^{\prime}+Q y_{2}=0 \\
y_{2}=v y_{1} \\
y_{2}^{\prime}=v y_{1}^{\prime}+v^{\prime} y_{1} \\
y_{2}^{\prime \prime}=v y_{1}^{\prime \prime}+2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1} \\
v\left(y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right)+v^{\prime \prime} y_{1}+v^{\prime}\left(2 y_{1}^{\prime}+P y_{1}\right)=0 \\
v^{\prime \prime} y_{1}+v^{\prime}\left(2 y_{1}^{\prime}+P y_{1}\right)=0
\end{gathered}
$$

$$
\frac{v^{\prime \prime}}{v^{\prime}}=-2 \frac{y_{1}^{\prime}}{y_{1}}-P \quad \int \frac{v^{\prime \prime}}{v^{\prime}}=-2 \int \frac{y_{1}^{\prime}}{y_{1}}-\int P d x
$$

$$
\ln v^{\prime}=-2 \ln y_{1}-\int P d x \quad \ln v^{\prime} y_{1}^{2}=-\int P d x
$$

$$
v^{\prime}=\frac{1}{y_{1}^{2}} e^{-\int P d x} \quad v=\int \frac{1}{y_{1}^{2}} e^{-\int P d x} d x
$$

All that remain is to show that y_{1} and $y_{2}=v y_{1}$, where v is given by above equation actually are linearly independent as claimed;

Problems page 90-1

$$
W\left(y_{1}, y_{2}\right) \neq 0
$$

$$
v=\int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x \quad y_{2}=v y_{1}=y_{1} \int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x
$$

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
y_{1} & y_{1} \int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x \\
y_{1}^{\prime} & y_{1}^{\prime} \int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x+\frac{1}{y_{1}} e^{-\int P d x}
\end{array}\right|=e^{-\int P d x} \neq 0
$$

Example: $y_{1}=x$ is a solution of
Find G.S.?
$x^{2} y^{\prime \prime}+x y^{\prime}-y=0$
$y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0 \quad v=\int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x$
$P(x)=\frac{1}{x}$
$v=\int \frac{1}{x^{2}} e^{-\int 1 / x d x} d x=\int^{x} \frac{1}{x^{2}} e^{-\ln x} d x$
$=\int x^{-3} d x=\frac{x^{-2}}{-2} \quad y_{2}=v y_{1}=\left(\frac{x^{-2}}{-2}\right) x=-\frac{1}{2} x^{-1}$

$$
y_{g}=c_{1} x-\frac{c^{\prime}}{2} x^{-1}=c_{1} x+c_{2} x^{-1}
$$

Example: $y^{\prime \prime}-4 y^{\prime}-12 y=0, \quad y_{1}=e^{6 x}$

$$
\begin{aligned}
& \begin{aligned}
& v=\int \frac{1}{y_{1}{ }^{2}} e^{-\int P d x} d x=\int \frac{1}{e^{12 x}} e^{4 \int d x} d x \\
&=\int e^{-12 x} e^{4 x} d x=-\frac{1}{8} e^{-8 x} \\
& y_{2}=v y_{1}=-\frac{1}{8} e^{-8 x} e^{6 x}=-\frac{1}{8} e^{-2 x} \\
& y_{8}=c_{1} e^{6 x}-\frac{c^{\prime}}{8} e^{-2 x}=c_{1} e^{6 x}+c_{2} e^{-2 x}
\end{aligned} .
\end{aligned}
$$

Thanke for Hstening

