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When the magnetic field is perpendicular to the velocity, the motion will
clearly be circular since the force will always be oriented ‘inward’
perpendicular to the velocity - it is a centripetal force which leads to a
centripetal acceleration. The trajectory, for a positive charge, is shown
below:

F =qv'xB =qvj xBk =qvBi
ZI=(0




What happens if the velocity is not perpendicular to the field? In this case,
we can resolve the velocity into two components, one parallel to the field and
one perpendicular.

F=qvxB =q, +V' )xB =qv, xB

This perpendicular component of velocity .
varies in the same way as the previous

example of circular motion. There will be

no force along the magnetic field, so the

motion in that direction is simply a /Y
constant velocity given by the parallel ; .
component of velocity to the field - this ok -

component is unaffected by the magnetic
field. In this case, the motion will be
helical:

A =V,



Constrained Motion of a Particle

When a moving particle in restricted geometrically in the sense
that is must stay on a certain definite surface or curve, the motion
is said to be constrained

The Energy Equation for Smooth Constrains

g///1]]]]1
(—mv"
dt 2

%mv2+v (X,y,z)=const.=E

<

)/A




Example 1: A particle is placed on top of a smooth sphere of radius a. If the
particle is slightly disturbed, at what point will it leave the sphere.

dv’ e N
m—=mg +R R
dt ; l
V1113 i
Emv Nz~ E | v

v =0 for z=a—>E =mga

v:=2g(@-2)

Z
i =-mg cosfd+R=—mg —+R
a a




Z mv
R =mg =mgz—m2g(a—z)
d d a a

R =m—g(32 —2a) when z =ga—>R =0

Example 2: Constrained motion can a ;yc[oidf Consider a particle sliding
under gravity in a smooth cycloidal trough, Figure, represented by
the parametric equations.

= a

(X =A2¢0+5in 2¢)

3
'z =A(1l-cos2¢) L




A cycloid is the locus of a point on the circumference of a circle rotating along a

fixed line . . . . ?%Q
Now the energy equation for the motion, assuming no-y-motion, is:

1 LA

E/Z2mv’ +V (Z) ==m(X 7+ ZI) EieE
2 2

(X =2Ap(1+cos2¢p)

L/ 11

Z =2A@SINn2¢p
N

E =4mA°p° (1+cos 2¢) + mgA (1—cos 2¢)
we have : 14+ c0s2¢ = 2c0s° @)
1-c0s2¢ = 2sin° @)



E =8mA~°p° cos’ ¢ +2mgA sin® ¢
S =4AsIing s =4A@pCcosy

e 2

E —8mA2p% —> 4 2mgA (—
e Gen?’
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problem No 18
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4 V(X,y,z2)=ax +By°+yz°
a) The total energy E equals to the initial kinetic energy

E::%mvf

When the particle is at the point (1,1, 1) its potential energyv is
V =a++y
1 1
2 2
E=—mv, " =a+f+y+—-—mv
A 2

V2=Voz—%(a+ﬁ+y)

b) vii=Z(atfty)
m



c) V(X,y,2)=aXx +By°+yz°
A
OX

my':—alz—Z,By MZ| = il —_3yz2°

oy 0z

Problem 4.8: Let R is the distance measured along the slope between the initial and final

mx = —a

points of the projectile trajectorv. It is what we have to find. Let x and y are horizontal and
vertical coordinate of the final point. Then

X =R cosg y =Rsing

X :th y=Vyt—%gt2




Rcosp=v,t Rsing=v t ——;-gt2

Eliminating from here f one gets

f 2 ,° cos e (Sin o cos ¢ — cos a sin @)

R 2
g COS” @

SIN(x — @) =SIN  COS @ — COS x SIN @

/| & ,° cos a sin(a — @)

R 2
g COS” @

R as a function of the angle a of gun elevation has maximum when dR/do = 0 which gives the
condition

—sinasin(a — @) +cosa cos(a — @) =0



sin(@ — @) =sin & cos @ — cos dsin @
cos(8 + @) =cosfcosp—Ssinfsin @

cos(2a— @) =0

200—p=r1l2 a=@pl2+xl4

Substituting o« = ¢/2 4+ 7 /4 into the above formula for R and using trigonometric identities
from the appendix B one can get the desirable result

2
V0

R. ., = :
g(@d+sing)

MmaX




1) x({t)=-o™x@t)  V(t)=—-aY(t)

The general solutions of these equations can be written for example as

X (t) =a,cosat +a, sin at
y (t) =b,cosat +b, sin at

where the constants a; and b; must be found from initial conditions. The initial conditions
involves velocities so we need to know the derivatives

X (t) = —a,wsin ot +a,wcos at

y (t) =—b,wsinat +b,wcos at



t =0 x (0) = A X (0)=0
a, =A a,w=0
X (t)=A cosak
y (0) =4A y(0) = 3wA
b, = 4A b,® = 3wA
y (t) =4A cos at + 3A sin ot
X =A

The matter with y,., is a little more complicated. Let ¢, is a moment when y(t) take a
maximum, i.e.

Yimax = Y ()



tn can be found from the condition #(t,,) = 0 which gives

tanat,, =3/4
Yo =Y ) =4Acosat, +3Asinat

/ tan z 1
SINZ = COSzZ = TANE LY

J1+tan?z J1+tan?z

—A <X <A
—DA <y <5A

Therefore the motion occurs in the rectangle

Instead of writing the general solutions of equations of motion in the form

X (t) =a,cosat +a, sin at



y (t) =b,cosat +b, sin at
X(t)=acos(at +) VY ()=Dbcos(at + p)

t=0a=A, a=0t=0>y =4A=5Acosf3
B =cos'(4/5) =sinT'(=3/5)

2ab cos A
g 2y = i Here A=f—a=/
tg/2y/ L BRI
A? —(5A)

Y = %tanl(—ll 3)=-9.2
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(X°+4y°+9z°)
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m
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t=0—->x0)=y(0)=z(0)=0

v," =X*(0)+y *(0)+Z°(0)
x'(0)=y'(o)=z'(0)=%3 )
X({t)=Acos(at +) x(t)=A cos(ak _E)

. T Vv
X (t)=Awsin(at —— y —L = Aw
(t) :) ( 2) Na
a)xzz——>a)x=7f X(l)=
I ()= M
y(t)= S|n27ft A1) = S|n3 t






2
N —mg cos(90—6?):—mvF

V2

—N +mg siné':mF

but with N = 0, one has the velocity at which N =0

v* =bgsin@

(When this velocity is achieved N will become zero.)

mg%:%m(bg sin @) + mgb sin &
m9b=3mbgsin9 —>sin6’=}- _>h:E
22 3



Example
F) Ve, +c, v ))

y = C.+C¥0 m=0046kg, D =0.042m

m
i 0.22D % |, _ 0.0084,
m m

V,=20m/s - y=0.17s"



v, sin2a v, ’sin2asina

X AN
) g 3920 07/
7l (20)°sin60°  4(20)°sin60 sin30 x0.17
“ 9.8 3(9.8)*

=35.3m —-8.2m =27/.1m



