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Phase Angle
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C()O ol ) High Q = sharp resonance

Damping reduces Q
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The width of the resonance w decay time
curves depends on £ i.e., on the period
amount of damping
- 1/y _ 9
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Bandwidth, BW =
difference between

the two half-power
Prequencies L




Velocity Resenance
X =Acos(at —p) X =—-wAsin(at — @)

oF. I'm @
V(0)= 2 2 i y>f;
\/(wo ~0°)+4y" 0,

Example: The exponential damping factory of a spring suspension system is
one-tenth the critical value. If the undamped frequency is ®,, find (a)the
resonant frequency, (b) the quality factor, (c) the phase angle ¢ when the
system is driven at a frequency ®=0,/2, and (d)the steady-state amplitude
at this frequency. NG Ee
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a)y =¥ 110=aw, /10 0’ =w-y
@, =@, ~2(a, 110)* =0,+/0.98 =099
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d)A(w) = w=aq,l?2
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The Nonlinear Oscillator. Method of Successive Approximations

= (X ) = —kX Linear Oscillator

= (X ) — —kX — (X ) Nonlinear Oscillator
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MX +kX =g,X°+&X>+... mX+kx =gx°
.\ N g 1
X et X + @, "X = Ax°
m m

We shall find the solution by the method of successive approximations.
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A=0—>X =Acoswpt

Suppose we try a first approximation of the same form

A0 X =Acosat @ # o,

~Aw’ cosat +Aw,” cosat = AA° cos® ot
- /IA?’(%cosa)t +%0053a)t)

cos3a =4¢cos> o —3cos

(—o° + @, —%/IAZ)A oS aX —%AA?’ cos3at =0
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w=TF (A) a):\lm

X =ACOSakt +B coS3at  Second trail solution

a)oz—g/lA2

(~o° +w,’ —%iAZ)A cos at + (—9B o + w,’B —%1A3)003301)
+(terms involving B A and higher multiples of at)=0
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ofxam,ole: dhe Aim,ole pen.dalum. as a nonlinea oscillator
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Chapter 3 Problems
X (t) =Asin(at — @)
V(t)=Awcos(at — @)
The system passes the center at the moment t; defined by the condition
X({t)=Asin(at. —p)=0 o, +p=nri
where i = 0,1,2, 3, ... Velocity at these moments equals

V(t:)=Awcos(at; —@p)=Awcos(zl )=tAw
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¥ f =10Hz, t=0, x,=0.25m, v,=0.1m/s

Un .
z(t) = rpcoswt + — sinwt
w

X (t) = X, COS(27ft) + —2sin(2zft)
27t
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r(t) = 0.25 cos(207t) + sin(207t)




5 X () = A sin(at — o)
Vv (t)=Awcos(at — )
V (t) = Awy/1-sin? (et — @)

=a)\/A2 ~AZsin?(at —p) =wAZ—x?
X, =a)\/A2 X :a)\/AZ—XZ2
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9 X(t)=Ae " cos(ot —o¢
d
The moments ¢; (i = 1,2,3,...) when x(#) has maximums can be defermined from the equation

C(il—)t( — [a)d sin(w,t. — @)+ ¥ cos(w,t. —go)] =0

tan(oyt — @) =—y / o,

ot +o=tan"(-y / w, )+ 27i

|
Therefore the time between two successive maximea is

2
tiy1 — i = —
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The amplitude of the ith maximum is
A - —;
I ' cOS(w,t. — )
The amplitude of the (¢ + 1)th maximum is
S —Mia =0
X(ti+1) _Ae + COS(a)dti+1 (0)

Since ;40 = 1; + i—: X (ti+1) :e_yzﬂlwd X (ti )

X (ti+1) :e—27z7//a)d )

X (t;)

the ratio x(t, 1) /x(f;) does not depend on time and is given by
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o X(t)=e" cosa,t

After n cycles the amplitude drop is 1/e, so therefore the time passed is T =1/,

the time of n oscillation is determined by the condition
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Some concepts for oscillations

r‘eSTor'ing A force causes the system to return to some equilibrium
force: state periodically and repeat the motion

natural Resonant oscillation period, determined by physics of the
fr-equency: system alone. Disturb system to start, then let it go.
Examples: pendulum clock, violin string

Idealized case, no energy lost, motion persists forever

Und.amp.ed Example: orbit of electrons in atoms and molecules
oscillations:

Oscillation dies away due to loss of energy, converted to
damped heat or another form. Example: a swing eventually stops
oscillations:

. Undamped natural oscillation with F = - kX (Hooke’s
SImple Law); i.e. restoring force is proportional to the
harmonic displacement away from the equilibrium state
oscillation: . . . .

External periodic force drives the system motion at it's own

frequency/period, may not be the resonant frequency

forced
oscillations:
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Forced oscillations and resonance
e Swinging without outside help - free oscillations

e Swinging with outside help - forced oscillations

e If W, is a frequency of a driving force, then
forced oscillations can be described by:
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> (a) displacement as a
function of time

> (b) velocity as a function
of time

> (c) accelerationas a
function of time

The velocity is 90° out of
phase with the displacement
and the acceleration is 180°
out of phase with the
displacement
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Writing the Equations of Motion: Example 3

Write the equations of motion for the following:
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X (t)=Ae""“"™
X(t)=iwAe' ™ X(t)=-w’Ae'
-mw*Ae'“? +icoAe ) +kAe' ) =Fe'”
-mo’A +icoA +KA =Fg'’ =F (cosp+i sing)

Ak -mo®)=F,cosp  CwA=F;sing

A*(k -me’)* +C°w°A° = F02
B



SHM is the projection of uniform circular motion on a line in the plane of the
motion. One period of SHM can be divided into 360°.
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Figure 1-9 Phase of SHM curve. Figure 1-10 Two SHM curves differing in
phase by 180° (out of phase).
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Figure 1-11 Solid curve 90° ahead of dashed Figure 1-12 Solid curve 45° behind dashed
Curve. curve.




