

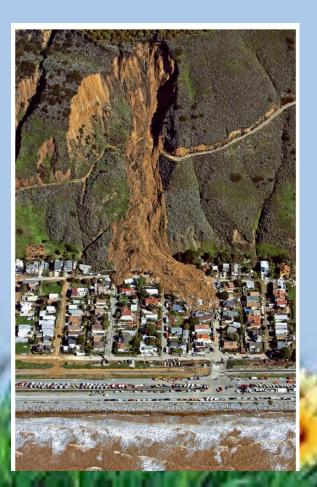
The Forecast Funnel

The forecast funnel visualizes the analysis and forecast process as a "funnel" from the planetary to local scales.

The idea is as shown in the figure: Always understand the planetary scale (waves) background first, then go to synoptic scale (such as frontal cyclones), then mesoscale (such as Thunderstorms), and finally local scale (such as, tornadoes).

Thunderstorm

Tornadoes

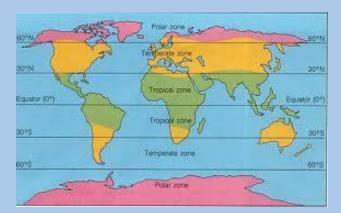

Weather impact on daily lives

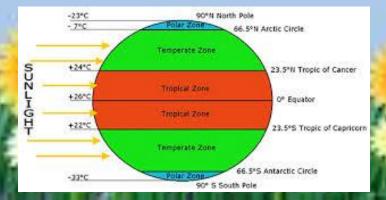
Hurricane Charley August 13, 2004 A Blizzard in Boston 2005

Winter Rains Trigger Mudslides in California 2005

Applied Meteorology

Applied meteorologists deal with the application of meteorological and climatological knowledge to such areas as agriculture, architecture, ecology, and air pollution.





Climate: The climate of a region is the condition of the atmosphere over many years.

Described by long-term averages of atmospheric conditions such as temperature and precipitation.

What is the atmosphere?

A fluid

A thin layer surrounding the Earth

Mainly a mixture of invisible gas with some solid and liquid particles that stays in place on account of the force of gravity.

What's in the atmosphere?

Invisible gases

Some are permanent gases, some variable Some are abundant, some not (trace gases) Some are greenhouse gases, some not Some pollutants, some not

Liquids

Water: cloud droplets, raindrops, fog, Pollutants

Solids

Water: ice crystals in clouds, snow Soil, sand, acid, pollen, other substances

Composition of the Atmosphere

Major Permanent Gas	Symbol	Percentage by Volume (%)
Nitrogen Oxygen	N ₂	78.08 20.95
Argon	Ar	0.93
Variable Gas		
Water vapor Carbon dioxide	H ₂ O CO ₂	0 to 4 0.039
Methane Nitrous oxide	CH ₄ N ₂ O	0.00018

O₃ CFCs 0 to 7×10^{-6}

 2×10^{-9} to 5×10^{-8}

Ozone

CFCs

Meteorology and Atmospheric Science

Usually used interchangeably

Atmospheric science includes not only meteorology but some other topics as well

- Charged particles and electricity in the ionosphere, parts of the upper atmosphere
- Atmospheres of other planets
- Includes the study and simulation of climate
- Includes the study of climate change

The Station Model

The weather conditions at each individual station can be represented on a surface chart by means of a station circle plot.

The land station circle plot can represent all the elements reported from that station, typically examples are:

Air temperature

Dew-point temperature

Wind speed

Wind direction

Visibility

Cloud amounts

Cloud types

Cloud heights

Present weather

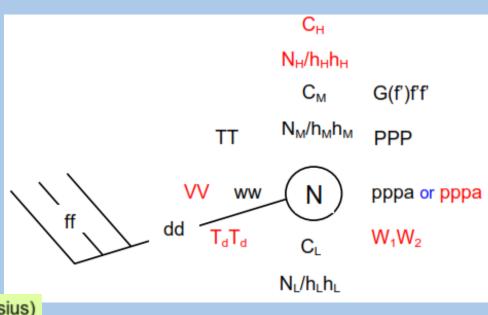
Past weather

Atmospheric pressure and

3-hour tendency

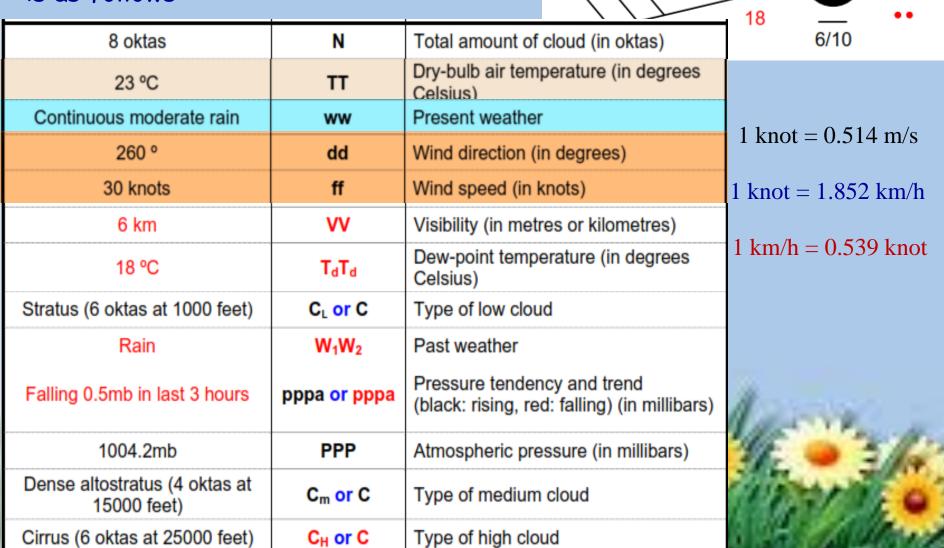
Land station circle plot

Each element of the observation, with the exception of wind, is plotted in a fixed position around the station circle so that individual elements can be easily


identified. Ν Total amount of cloud (in oktas) Type of low cloud C_L N_{L} Amount of low cloud (in oktas) $h_L h_L$ Height of low cloud (in feet) Type of medium cloud См Amount of medium cloud (in oktas) N_M Height of medium cloud (in feet) $h_M h_M$ Сн Type of high cloud N_H Amount of high cloud (in oktas) $h_H h_H$ Height of high cloud (in feet) Dry-bulb air temperature (in degrees Celsius) TT Present weather ww dd Wind direction (in degrees) Wind speed (in knots) ff W Visibility (in metres or kilometres) Dew point temperature (in degrees Celsius) T_dT_d W₄W₂ Past weather pppa or pppa : Pressure tendency and trend (black: rising, red: falling) (in millibars)

Atmospheric pressure (in millibars)

Wind gust (in knots)


PPP

G(f')f'f'

Example of synoptic elements plotted on a typical land station report

The decode of the above station plot is as follows:

6/75

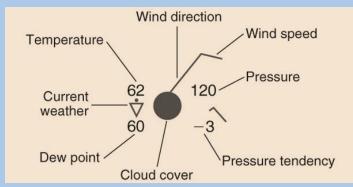
4/65

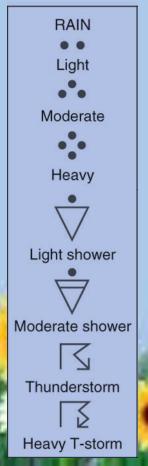
042

05 \

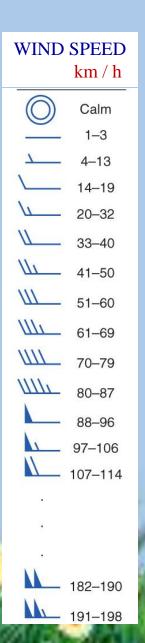
23

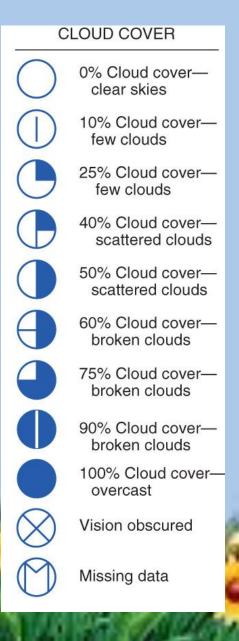
56


		_)	
		6/75	
		4	0.40
	23	4/65	042
56	••		05 \
	18		••
		6/10	


Weather as observed	Code group	Description	
8 oktas	N Total amount of cloud (in oktas)		
23 °C	TT	Dry-bulb air temperature (in degrees Celsius)	
Continuous moderate rain	ww Present weather		
260 °	dd	Wind direction (in degrees)	
30 knots	ff	Wind speed (in knots)	
6 km	VV	Visibility (in metres or kilometres)	
18 °C	T_dT_d	Dew-point temperature (in degrees Celsius)	
Stratus (6 oktas at 1000 feet)	C _L or C	Type of low cloud	
Rain	W_1W_2	Past weather	
Falling 0.5mb in last 3 hours	pppa or pppa	Pressure tendency and trend (black: rising, red: falling) (in millibars)	
1004.2mb	PPP	Atmospheric pressure (in millibars)	
Dense altostratus (4 oktas at 15000 feet)	C _m or C	Type of medium cloud	
Cirrus (6 oktas at 25000 feet)	C _H or C	Type of high cloud	

Oktas	Definition	Category
0	Sky clear	Fine
1	1/8 of sky covered or less, but not zero	Fine
2	2/8 of sky covered	Fine
3	3/8 of sky covered	Partly Cloudy
4	4/8 of sky covered	Partly Cloudy
5	5/8 of sky covered	Partly Cloudy
6	6/8 of sky covered	Cloudy
7	7/8 of sky covered or more, but not 8/8	Cloudy
8	8/8 of sky completely covered, no breaks	Overcast




The station model

Surface weather map

