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Terms 2, 3, 6, 7: Horizontal Deformation Terms

Terms 10 and 11: Vertical Deformation Terms

Terms 4 and 8: Tilting Terms

Term 12: Vertical Divergence Terms

Terms 1, 5, 9: Diabatic Terms
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Differential vertical motion 
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Vertical Divergence
the contribution

to frontogenesis due to divergence.
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The Curl of a Vector Field

This is a lot harder to visualize than the divergence, but not impossible.
Suppose you are in a boat in a huge river (or Pass) where the current
flows mainly in the x direction but where the speed of the current
(flux of water) varies with y.

Vorticity

Vorticity is the microscopic measure of spin and rotation in a fluid.

Wind direction varies → clockwise spin

Wind speed varies → clockwise spin

Vorticity is defined as the curl of the velocity: V



Expansion of relative vorticity into Cartesian components:

For large scale dynamics, the vertical component of vorticity is most
important.
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For many, but noy all, tupes of frontal development it is sufficient to 
consider the 2-D equation in which the tilting terms are neglected.
The resulting expression:

Another view of the 2D frontogenesis function

Recall the kinematic quantities:      
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Thus, horizontal frontogenesis is induced by divergence, streteching and 
shearing deformation.
Note that the vorcity terms cancel, which implies that the frontogensis is 
independent of vorticity.
Even thought vorticity is produced in the frontal zone, it playes no direct role 
in frontogensis.



Stretching and Shearing deformation
“look alike” with axes rotated
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Stretching Shearing

dry

moist

However, vorticity can still play an indirect role by rotating isotherms into 
alignment with the axis of dilatation. 
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The total deformation is equal to the magnitude of the stretching 
and shearing deformation, i.e., 

2

2 2 1/2

1
2

1 2

/2

( )
u v v u

F F
x yx y

F
  

 
  

  
  

 
   

   
 

The advantage of this equ. is that it explicitly expresses the effects 
of confluence and diffluence in terms of the contributions to each 
from both horizontal divergence and deformation. 
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We can simplify the 2D frontogenesis equation by rotating our
coordinate axes to align with the axis of dilatation of the flow (x´)

Ψ

The coordinate system is rotated such that the x´-axis lies along 
either the axis of dilatation or the axis of contraction. 
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If the x-axis is rotated so as to lie along the axis of dilatation, 
the y-axis lies along the axis of contraction, and vice versa. 

β= angle between the isentropes and the axis of dilatation

β= -90° - α, where a is the angle between the horizontal potential temperature 
gradient        and the x-axis. 
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In this coordinate system, the equ. can be re-written as: 
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This equation illustrates that horizontal frontogenesis is only 
associated with divergence and deformation, but not vorticity
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Where F is the total deformation of the flow, β is the angle between
the isentropes and the dilatation axis of the total deformation field,
and D is divergence (D <0 for convergence)
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F is the resultant deformation in the new coordinate system.

let us first consider the effects of deformation upon frontogenesis, i.e., 

2 ( cos2 )
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DF F
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When the axis of dilatation lies within a 45° angle of the horizontal
potential temperature gradient, deformation is a frontogenetical
process.

When the axis of dilatation lies between a 45° and 90° angle of the
horizontal potential temperature gradient, deformation is a
frontolytic process.
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Pure deformation flow (black streamlines) with the x-axis aligned along
the axis of dilatation (e.g., along the stretching axis) and the y-axis
aligned along the axis of contraction.
Isentropes representing the horizontal potential temperature gradient
are depicted by the black dashed lines.

In the left panel, the angle between the horizontal potential temperature
gradient and the axis of dilatation is less than 45°, a frontogenetic situation.
In the right panel, the angle between the horizontal potential temperature
gradient and the axis of dilatation is greater than 45°, a frontolytic situation.
This can be confirmed by visually interpolating how the flow will cause the
horizontal potential temperature gradient to evolve with time.
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to consider the effects of divergence upon frontogenesis, i.e., 

DF D 
2

1
2

Since D > 0 for divergence and D < 0 for convergence, we find that
convergent flow is a frontogenetic process while divergent flow is a
frontolytic process.

Note that this is true no matter the orientation of the horizontal
potential temperature gradient.


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In the above discussion, we considered the effects of deformation
and horizontal divergence upon frontogenesis.

It may be natural, therefore, to ask whether vertical vorticity can
result in frontogenesis or frontolysis.



Directly, rotational flows cannot; they can merely serve to rotate the
horizontal potential temperature gradient.

However, such rotation can change the angle of the horizontal potential
temperature gradient with respect to the axes of dilatation and contraction,
thereby indirectly impacting frontogenesis and/or frontolysis.

Deformation itself can also change the angle of the horizontal potential
temperature gradient with respect to the axes of dilatation and contraction,
although this is perhaps not as easy to visualize.




