Atmospheric Aerosols
Lecture 12




§ — Concept of Drag
-~
S

Drag is the retarding force exerted on a moving body in a fluid medium
It does not attempt to turn the object, simply to slow it down

It is a function of the speed of the body, the size (and shape) of the body, and the fluid
through which it is moving

A common form of the drag force due to wind (air) acting on an object can be found by:

Co A dimensionless Coef 1 4 o1
. F —_— C u... .
Ac Area projected in flow direction (a circle here) drag pPUx

free stream velocity: vel. relative to object in same direction as Drag
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Stokes' law has been derived for Re « 1, neglecting the inertial terms in the equation of
motion.

If Re= 1, the drag predicted by Stokes' law is 13% low, due to the errors intfroduced by the
assumption that inertial terms are negligible.

To account for these terms, the drag force is usually expressed in terms of an empirical drag
coefficient Cy as

l Diameter, pm Re
F drag — i‘ CDAppuzoo 0.1 7x10°°

1 28 x 107

. . 10 25% 1073
where A, is the projected area of the body p~=m~! 4~ +ho £l 20 0.02

0.4

] 60
Thus for a spherical particle of diameter D, Furg = §1ICDPD,2,M§O 100 2

-
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where the following correlations are available for the drag coefficient as a function of the
Reynolds number:

Re< 1 (Stokes’ law)

™~

Cp=185Re® Rex1

Note for C; = 24/Re, the drag force calculated by (above Eq.) is Fyq = 3TTuDu,,
equivalent to Stokes' law.
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Transitional Turbulent
regime regime
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Drag coefficients in fluids with Reynolds number approximately 104

Shape Drag
Coefficient
Sphere ——= O 0.47
Half-sphere —s= ( 0.42
Coneg  —a < 0.50
Cube & 1.05
Angled 0 80
Cube {i::> :
Long
Cylinder 0.82
Short
1.15
Cylinder
Streamlined 'C:::" 0. 04

Body

Streamlined

Half-body S, 0.09

Measured Drag Coefficients
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e 3 .

Reynolds Number for Particles in Air Falling at Their Terminal
Velocities at 298 K g

0.4
2
20

1.1D
C.=1+2 1257 +0.4exp(— P)]

D, 21
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Creeping Flows

Viscosity goes to « (very low Reynolds
humber)

Left hand side of the momentum equation
is not important (can be taken to vanish).

Friction is more important than inertia.
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Inviscid Flows

Viscosity goes to zero (very large Reynolds
humber)

Left hand side of the momentum equation is
important. Right hand side of the momentum
equation includes pressure only.

Inertia is more important than friction.




\K. . Values of Cc as a function of the particle diameter Dp in air at
\. ) 25°Care given in Table:
\ b
> Y ) RV - -
Dp, pm Ce
Slip Correction Factor Cc for Spherical Particles in Air at g%; f(l)g
298 K and 1 atm 005 o
0.01 222
The slip correction factor is generally neglected for 8'8? "'1'35
particles exceeding 10 pym in diameter, as the correction is 0.1 2 85
less than 2%. 0.2 1.865
0.5 1.326
On the other hand, the drag force for a 0.1 um in diameter ;:g {;(’)‘;‘;
particle is reduced by almost a factor of 3 as a result of this 50 1.032
slip correction. 10.0 1.016
20.0 1.008
50.0 1.003

100:0 1.0016
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To derive the equation of motion for a particle of mass m, let us begin with a force balance on
the particle, which we write in vector form as

For a particle falling in a fluid there are two forces acting on it, the gravitational force m,g and
the drag force Fy.,,. Therefore, for Re < 0.1, the equation of motion becomes

dv 3n
Mp e = Mp8 chp(““’)

This equation can be rewritten as
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Let us consider the case of a particle in a quiescent fluid (u = O) starting with zero velocity and
let us take the z axis as positive downward.

Then the equation of motion becomes

and its solution is v,(t) = 18[1 — exp(—¢/1)]

For + » 1, the particle attains a characterstic velocity, called its terminal settling velocity v, =1g

or
mPCC _ mpccg

T = —
3nuD, o 3nuD,
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my = (7/6)D,(p, — p)

where the factor (p, — p) is needed to account for both gravity and buoyancy.

since generally p, » p my, = (n/ ﬁ}ﬂﬁpp

- | 1 D2p,eC.
and * can be rewritten in the more convenient form: v, = T "

The timescale T indicates the time required by the particle to reach this terminal settling
velocity and is given in Table.
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Characteristic Time Required for Reaching
Terminal Settling Velocity

The relaxation time x also describes the time required by a particle entering a fluid stream,
to approach the velocity of the stream.

Thus the characteristic time of most particles of interest to achieve steady motion in air is

extremely short.

D,, um T, 8

0.05 4 % 1078

0.1 9.2 % 1078

0.5 1x10°%

1.0 3.6 x 1078

5.0 7.9 x 1073

10.0 3.14 x 10~

2021-05-19 50.0 7.7x107°




p Diameter, pm Re

(‘ 0.1 7 x 107°
R 1 2.8 x 1076
N ) 10 2.5 % 1073

20 0.02
\ 4 60 0.4
100 2 e

Our analysis so far is appllcable to Re < 0.1 or particles smaller than about 20 ym (Table).

For larger particles, one needs to use the drag coefficient as an empirical means of representing

the drag force for higher Reynolds numbers.

The equation along the direction of motion of the particle in scalar form, assuming no gas velocity,

is then
dv, 1 Cp
mp—- —mpg—gn—c D"'v2

. . . : . 48DpCrpp /2
At steady-state v, = v,, the particle reaches its terminal velocity given by # =

3Cpp
However, as Cy is a function of Re and therefore v;, we have only an implicit expression for v, in

the equation.
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One needs then to solve
calculated by

4gD,C.p,\
9 = ( 80 cp,) numerically with €,

3Cpp

Re< 1 (Stokes’ law)

~/

Cp=185Re™® Re>1

or one can use the following technique:

Cpv; Dyp?

If we form the product CpRe? = >
M

and substitute into this the v, given by above equation, we obtain  Cp Re? =
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24

CpRe? can be calculated from Cp = Re Re<1 (Stokes’ law)

Cp = 18.5 Re %6

Then using Figure, we calculate Re.

HRe

% =
Then 4 0 Dp

and there is no need to solve the system of nonlinear 107! 10 10’
algebraic equations. Reynolds Number, Re

2 .
20910519 CpRe? as a function of Re for a sphere




