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Potential Vorticity
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Barotropic  (Rossby) P otential Vorticity Equation
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Absolute Vorticity 
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𝑃𝑉𝑅 =
𝜁 + 𝑓

ℎ

𝑑

𝑑𝑡
(𝜁 + 𝑓) = 0 𝜁 + 𝑓 = 𝑐𝑜𝑛𝑠𝑡

(𝜁 + 𝑓)0 = (𝜁 + 𝑓)1

Example (1)

𝜁0 + 𝑓0 = 𝜁1 + 𝑓1

5 × 10−5 + 2Ω sin 3 0 = 𝜁1 + 2Ω sin 9 0

𝜁1 = −2.3 × 10−5𝑠−1

For a homogeneous, incompressible fluid flow
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Which states the absolute vorticity is conseved following the horizontal motion.



Example (2)

(
𝜁 + 𝑓

ℎ
)0 = (

𝜁 + 𝑓

ℎ
)1

0 + 2Ω sin 6 0

10𝑘𝑚
=
𝜁1 + 2Ωsin 4 5

(10 − 2.5)𝑘𝑚

𝜁1 = −8.4 × 10−6𝑠−1

𝜁𝑎1 = 𝜁1 + 𝑓1 = 9.5 × 10−5𝑠−1
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Ertel  potential Vorticity 
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Kelvin’s Circulation Theorem 

Adiabatic flow can be described by Kelvin’s circulation theorem:

where δC is evaluated for a closed loop encompassing the area δA on an isentropic surface. 

thus if the isentropic surface is approximately horizontal, for an infinitesimal parcel of air:
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Coriolis 
parameter

The vertical component of vorticity is given by 𝜁𝜃 =
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ቄ
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Ertel  potential Vorticity 
𝜁𝜃 =
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Isentropic Potential Vorticity

Potential vorticity is conserved following adiabatic, frictionless flow 8
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Due to the conservation of PV, there is a close relationship between absolute vorticity and
static stability. The diagram below shows a cylinder with the top and bottom defined by two
isentropic surfaces.
Difference in potential temperature between the top and bottom is the same for the two
cylinders. If PV is conserved, and the cylinder is stretched as shown in (b), then static stability
is decreasing and absolute vorticity must increase. Alternatively, if one goes from (b) to (a),
then static stability is increasing and absolute vorticity must decrease.

𝜕𝜃

𝜕𝑝
→ 0 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 , 𝜍𝜃 → 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

𝜕𝜃

𝜕𝑝
→ 0 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 , 𝜍𝜃 → 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒

𝜕𝜃

𝜕𝑝
→ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 , 𝜍𝜃 → 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

𝑃𝑉𝐸 = 𝑔(𝜁𝜃 + 𝑓)(−
𝜕𝜃

𝜕𝑝
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There are several reasons why many meteorologists think that the consideration of IPV charts
are useful.

First of all, PV is a conserved quantity in adiabatic, frictionless flow. The conservation of
potential vorticity is a powerful constraint on the large scale motions of the atmosphere.

PV centres may be identified on a series of analyses and can be used to describe the evolution
of flow patterns during significant synoptic events such as rapid cyclogenesis, blocking and
retrogression of longwaves.
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Secondly, it is possible to deduce the T, p and wind fields from the PV distribution if a

number of assumptions are made.

For example, one assumption involves the specification of a balance condition which relates

the mass field to the motion field.

The simplest balance condition is the quasi-geostrophic approximation.

One must also specify an initial reference state and appropriate boundary conditions.

Once this is done, however, the spatial distribution of PV then becomes a source term in the

equations, the flow field being derived entirely from this term.

Later, an analogy will be made with static electric charge distributions and their associated

electric fields.
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Finally, certain atmospheric processes may be described in terms of the interaction of PV

anomalies with the background structure of the atmosphere.

For example, when a strong upper-level PV anomaly moves over a low-level baroclinic zone,

cyclogenesis usually results.

There is no need to invoke secondary circulations (vertical motions) as drivers of the

development.

In addition, a superposition principle may be used to describe the interaction of PV anomalies

at different levels in the atmosphere, interactions which lead to changes in the circulations at

these levels.


