
Physics Department

Razi University

Atmospheric Dynamic 

Lecture 2

Sahraei

https://sci.razi.ac.ir/~sahraei



Vorticity in Natural Coordinates

Using natural coordinates can make it easier to physically
interpret the relationship between relative vorticity and the flow.

To express vorticity in natural coordinates, we compute the circulation around the
infinitesimal contour shown below.

From the diagram, d(ds) = db dn, where δb is the angular 
change in wind direction in the distance δn.
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where Rs is the radius of curvature of the streamlines 
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The rate of change of wind speed normal to the direction of flow, which is called the shear vorticity.

It is now apparent that the net vertical vorticity component is the result of the sum of two parts: 
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The turning of the wind along a streamline, which is called the curvature vorticity.
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Vorticity Maximum: Along the trough axis to left of the strongest flow. Both shear and curvature 
terms are positive.

Vorticity Minimum: Along the ridge axis to right of the strongest flow. Both shear and curvature 
terms are negative.
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Absolute vorticity =  + f
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In a mass of continuum that is rotating like a rigid body, the vorticity is twice the angular
velocity vector of that rotation.

This is the case, for example, of water in a tank that has been spinning for a while around its
vertical axis, at a constant rate.

Rigid-body-like vortex
v ∝ r
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The vorticity may be nonzero even when all particles are flowing along straight and
parallel pathlines, if there is shear (that is, if the flow speed varies across streamlines).

For example, in the laminar flow within a pipe with constant cross section all particles travel
parallel to the axis of the pipe; but faster near that axis, and practically stationary next to
the walls.

The vorticity will be zero on the axis, and maximum near the walls, where the shear is largest.

Parallel flow with shear
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Conversely, a flow may have zero vorticity even though its particles travel along curved
trajectories.

An example is the ideal irrotational vortex, where most particles rotate about some straight
axis, with speed inversely proportional to their distances to that axis. A small parcel of
continuum that does not straddle the axis will be rotated in one sense but sheared in the
opposite sense, in such a way that their mean angular velocity about their center of mass is
zero.

Irrotational vortex
v ∝ 1/r



The Vorticity Equation

The previous section discussed kinematic properties of vorticity.

This section addresses vorticity dynamics using the equations of motion to determine
contributions to the time rate of change of vorticity.

Cartesian Coordinate Form

For motions of synoptic scale, the vorticity equation can be derived using the approximate
horizontal momentum equations.

We differentiate the zonal component equation with respect to y and the meridional
componentequation with respect to x:
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Above the boundary layer, all horizontal parcel accelertions can be understood by comparing the
magnitude and direction of the pressure gradient and coriolis forces.
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