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The Quasi-Geostrophic Vorticity Equation

Just as the horizontal momentum can be approximated to O(Ro) by its geostrophic value, the 

vertical component of vorticity can also be approximated geostrophically.

In Cartesian coordinates the components of                                   are

Thus, the geostrophic vorticity,                               , can be expressed as



This invertibility is one reason why vorticity is such a useful forecast diagnostic; if the
evolution of the vorticity can be predicted, then inversion of this evolution yields the evolution
of the geopotential field, from which it is possible to determine the geostrophic wind and
temperature distributions.

Since the Laplacian of a function tends to be a maximum where the function itself is a minimum,
positive vorticity implies low values of geopotential and vice versa, as illustrated for a simple
sinusoidal disturbance in Fig.

Schematic 500-hPa geopotential field showing
regions of positive and negative advections of
relative and planetary vorticity.



The quasi-geostrophic vorticity equation can be obtained from the x and y components of the

quasi-geostrophic momentum equation,

which can be expressed, respectively, as

which should be compared with



Noting that because f depends only on y so that

and that the divergence of the ageostrophic wind can be eliminated in favor of ω using

we can rewrite as

which states that the local rate of change of geostrophic vorticity is given by the sum of the
advection of the absolute vorticity by the geostrophic wind plus the concentration or dilution
of vorticity by stretching or shrinking of fluid columns (the divergence effect).

The vorticity tendency due to vorticity advection [the first term on the right in (*)] may be
rewritten as

*



The two terms on the right represent the geostrophic advections of relative vorticity and

planetary vorticity, respectively. For disturbances in the westerlies, these two effects tend to

have opposite signs, as illustrated schematically in Fig. for an idealized 500-hPa flow.

In region I upstream of the 500-hPa trough, the

geostrophic wind is directed from the relative

vorticity minimum at the ridge toward the relative

vorticity maximum at the trough so that



we consider an idealized geopotential distribution on a midlatitude β-plane consisting of the

sum of a zonally averaged part, which depends linearly on y, and a zonally varying part

(representing a synoptic wave disturbance) that has a sinusoidal dependence in x and y:

Here, where a is the radius of the earth and φ0 is the latitude at which f0

is evaluated.

The paramers , and A depend only on pressure,

the wave numbers k and l are defined as k = 2π/Lx and l = 2π/Ly with Lx and Lythe

wavelengths in the x and y directions, respectively.



The geostrophic wind components are then given by

The geostrophic vorticity is then simply

With the aid of these relations it can be shown that in this simple case the advection of

relative vorticity by the wave component of the geostrophic wind vanishes:



so that the advection of relative vorticity is simply

and the advection of planetary vorticity can be expressed as





QUASI-GEOSTROPHIC PREDICTION

Defining the geopotential tendency and recalling that the order of partial

differentiation may be reversed, the geostrophic vorticity equation

can be expressed as

Although, as explained above, the ageostrophic vertical motion plays an essential role in the

maintenance of thermal wind balance as the flow evolves, the evolution of the geostrophic

circulation can actually be determined without explicitly determining the distribution of ω.

where we have used

to write the geostrophic vorticity and its tendency in terms of the Laplacian of geopotential.



Thus, since by  

the geostrophic wind can be expressed in terms of , the right-hand side of 

depends on the dependent variables    , and ω alone.

An analogous equation dependent on these two variables can be obtained from the
thermodynamic energy equation

by multiplying through by f0/σ and differentiating with respect to p. Using the definition of χ
given above, the result can be expressed as



where σ was defined below

The ageostrophic vertical motion, ω, has equal and opposite effects on the left hand sides in

and.

*

**

Vertical stretching (∂ω/∂p > 0) forces a positive tendency in the geostrophic vorticity (*)

and a negative tendency of equal magnitude in the term on the left side in (**).



where we have used the fact that varies only slowly with height in the

troposphere. Because T is the departure of temperature from its standard atmosphere value,

the expression

is proportional to the local static stability anomaly divided by the standard atmosphere static

stability. Multiplication by f0 gives this expression the same units as vorticity.



As was shown in Fig.

an air column that moves adiabatically from a region of high static stability to a region of low

static stability is stretched vertically (∂ω/∂p > 0) so that the upper portion of the column

cools adiabatically relative to the lower portion.

Thus, the relative vorticity in (*) and the normalized static stability anomaly in (**) are changed
by equal and opposite amounts.

For this reason the normalized static stability anomaly is referred to as the stretching
vorticity.



Purely geostrophic motion (ω = 0) is a solution to (*) and (**) only in very special situations such

as barotropic flow (no pressure dependence) or zonallysymmetric flow (no x dependence).

More general purely geostrophic flows cannot satisfy both these equations simultaneously, as

there are then two independent equations in a single unknown so that the system is over-

determined.

Thus, it should be clear that the role of the vertical motion distribution must be to maintain

consistency between the geopotential tendencies required by vorticity advection in (*) and

thermal advection in (**).


