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The variation of the Coriolis parameter with latitude can be approximated by expanding the
latitudinal dependence of f in a Taylor series about a reference latitude φ0 and retaining only
the first two terms to yield:

ROSSBY WAVES-ß plane
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The Coriolis paramter f = 2Ω sin φ can be expanded using a taylor series around φ = φo
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The Coriolis parameter changes linearly with latitude

The f-plane approximates f as the first term of the Taylor Series, f is taken as a constant.

The approximation is usually referred to as the midlatitude β-plane approximation
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Rossby wave propagation can be understood in a qualitative fashion by considering a closed

chain of fluid parcels initially aligned along a circle of latitude.



A planetary wave in its pure form is a type of inertial wave which owes its existence to the

variation of the Coriolis parameter with latitude.

An inertial wave is one in which energy transfer is between the kinetic energy of relative

motion and kinetic energy of absolute motion.

Such waves may be studied within the framework of the Cartesian equations described above

by making the so-called "beta-plane" or "beta-plane" approximation.

Planetary Waves are Inertial Waves
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Then at t1 we have
1 0

( )t tf f + =

1 0 1t t tf f y = − =−

/df dy = is the planetary vorticity gradient at the original latitude
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Variation of the Coriolis parameter with latitude, the so called β effect

East

North

0

f = +Recall that the absolute vorticity

Assume that 00   at time t =

Now suppose that at t1 , δy is the meridional displacement of a fluid parcel from the original 

latitude.



1 0 1t t tf f y = − =−

It is evident that if the chain of parcels is subject to a sinusoidal meridional displacement

under absolute vorticity conservation, the resulting perturbation vorticity will be positive for a

southward displacement and negative for a northward displacement.
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This perturbation vorticity field will induce a meridional velocity field, which advects the chain

of fluid parcels southward west of the vorticity maximum and northward west of the vorticity

minimum, as indicated in Fig.

Perturbation vorticity field and induced velocity field
(dashed arrows) for a meridionally displaced chain of fluid
parcels.

The heavy wavy line shows original perturbation position;
the light line shows westward displacement of the pattern
due to advection by the induced velocity.
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The speed of westward propagation, c, can be computed for this simple example by letting 

 sin ( )y a k x ct = −

where a is the maximum northward displacement
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Substitution for δy and ξ in
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c

k
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Thus, the phase speed is westward relative to the mean flow and is inversely proportional to the

square of the zonal wave number.
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Free Barotropic Rossby Waves

The dispersion relationship for barotropic Rossby waves may be derived formally by finding

wave-type solutions of the linearized barotropic vorticity equation.

For a midlatitude -plane this equation has the form:

The barotropic vorticity equation

states that the vertical component of absolute vorticity is conserved following the horizontal

motion.
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We now assume that the motion consists of a constant basic state zonal velocity plus a small

horizontal perturbation:
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where as usual we have neglected terms involving the products of perturbation quantities. We

seek a solution of the form
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Here k and l are wave numbers in the zonal and meridional directions, respectively

Substituting for      in *  ( )2 2 2k l   =− +

( )2 2 2u u
t x

l
t

k
x

 
      

+  = − +   
    

+





0u v
t x

 


  
+ + =

 

( )( )2 2k l i uik =− + − +



13

ik
x


  


=


This gives the dispersion relation

( )( )2 2 0k l uk k − + − + + =

2 2

k
uk

k l


 = −

+

2

k
uk

K


 = −

is the total horizontal wave number squared.
2 2 2K k l +

2gc
k


=

      Phase speed in thex direction is xc
k


=

_

2
u

K


= −

2Rc
K


= − Depend on the variation of the Coriolis parameter with latitude and wavelength



A simple description of the basic dynamics of a pure horizontally nondivergent planetary wave

may be given by considering two-dimensional flow on a beta plane:

i.e., in a rectangular coordinate system with x pointing eastwards, y pointing northwards, and

with f = f0 + βy.

Horizontal nondivergence implies that H is a constant and therefore, in the absence of a body

force, the vorticity equation reduces to

( ) 0
d

f
dt

+ =

The absolute vorticity of each fluid column remains constant throughout the motion.

Non-divergent motions
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Rossby Waves

✓ Rossby waves, also known as planetary waves owe their origin to the shape and rotation of 

the earth

✓ Travel from east to west, following latitude 

✓ Slow moving

✓ Speed varies with latitude slower near the pole, faster near the Equator

✓ On the order of a few cm/s (or a few km/day)
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Planetary Waves are Inertial Waves
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The beta-plane approximation allows us to study of the

effects of varying f with latitude without the added

complication of working in spherical geometry.
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The zonal phase speed relative to the mean wind is

2
0xc u

K


− = − 

when the mean wind vanishes and 0l →

Thus, the Rossby wave zonal phase propagation is always westward relative to the mean

zonal flow.

Furthermore, the Rossby wave phase speed depends inversely on the square of the horizontal 

wave number. 

Therefore, Rossby waves are dispersive waves whose phase speeds increase rapidly with 

increasing wavelength
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K
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It is noted that the zonal phase speed of Rossby waves is always westward (traveling east to

west) relative to mean flow , but the zonal group speed of Rossby waves can be eastward or

westward depending on wave number.
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For a typical midlatitude synoptic-scale disturbance, with similar meridional and zonal scales

and zonal wavelength of order 6000 km, the Rossby wave speed relative to the zonal

flow calculated from:
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Because the mean zonal wind is generally westerly (to the east) and greater than 8 ms-1 .

Synoptic-scale Rossby waves usually move eastward, but at a phase speed relative to the

ground at a lower speed.



Relation between stream lines and trajectories in a progressive flow
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Relation between stream lines and trajectories in a retrogressive flow
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Note that  > 0 implies that cx < 0 and hence the waves travel towards the west

cx < 0 for large L
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low  , high f

high  ,   low f

+f = const

…but a Constant Absolute Vorticity Trajectory!

A very common misunderstanding:

This is NOT a Rossby wave!



A very common misunderstanding:

This is NOT a Rossby wave!

…but a Constant Absolute Vorticity Trajectory!

+f=const

low  ,  high f

high  ,   low f
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+f = const

One and the same CAV trajectory satisfies 

two types of streamlines (waves)

Long retrogressive waves

Short progressive waves
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cx < 0 for large L



Since cx is a function of k (or l), the waves are called dispersive.

In this case, the longer waves travel faster than the shorter waves.

For longer wavelengths the westward Rossby wave phase speed may be large enough to balance

the eastward advection by the mean zonal wind so that the resulting disturbance is stationary

relative to Earth’s surface.
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Stationary Rossby Wave
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are listed below for β as 1.6 x 10-11 m -1s -1, appropriate to 45 deg. latitude.
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For stationary waves can propagate only in eastward zonal winds (          ) that are not too strong0u 


