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Wave Generation

Disturbing force causes waves to form

Wind blowing across ocean surface (most surface ocean waves)

Interface of fluids with different densities

Air – ocean interface - Ocean waves

Air – air interface - Atmospheric waves

Water – water interface - Internal waves

Internal waves often larger than surface waves

Mass movement into ocean

Splash waves



Types of waves

3

Wave particles move in a circle

Waves are moving energy



Progressive waves in 

Notice that the orbital motion changes significantly according with the depth 

and the relationship between depth and wavelength.

(a) deep waters (b) shallow waters (c) intermediate waters



Shallow-water wave

Water depth is less than 1/20 wavelength

Wave speed (celerity) is proportional to depth of water

Orbital motion is flattened
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Restoring Force:  Gravity

Force is transverse to direction of propagation

Gravity waves are buoyancy waves, the restoring force comes from Archimedes’s principle.

They involve vertical displacement of air parcels, along slanted paths
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Shallow-Water Wave

4- Shallow water, Require λx >> h.  Otherwise too deep for hydrostatic assumption.

The second example of pure wave motion concerns the horizontally propagating oscillations
known as shallow water waves.

hydrostatic approximation
𝜕𝑝

𝜕𝑧
= 𝜌0𝑔

1- Incompressible and homogeneous flow, where ρ0 is a constant density => no sound waves
(simplifies equations)

.

2- The flow is assumed to be inviscid

3-The water is so shallow that the flow velocity, V(x, y), is constant with depth.
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z = h(x, y), the height of the free surface at point (x,y) that, the pressure is equal to
atmospheric pressure p(h), assumed constant and uniform.

p=p(h) 
p=p(h) 

Consider the volume of water bounded by vertical surfaces A and B in Figure. These surfaces
are located at x and x+dx respectively.

Integrating the hydrostatic equation over the depth of the fluid, h(x, y), gives the pressure
between z and h below the surface
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Shallow water model  Matsuno (1966)
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𝜌0𝑔𝑑𝑧 = 0 𝑝(𝑧) = 𝑝(ℎ) +𝜌0𝑔(ℎ − 𝑧) ∗

where p(h) is the pressure at the top of the layer of shallow water due to the layer above, which
we take to be a constant.

We assume that V is initially a function of (x, y) only, and since h is a function of (x, y). 

This equation indicates that V will remain two-
dimensional for all time.

Using * to replace pressure in the momentum equation gives

𝑑ℎ𝑉

𝑑𝑡
= −𝑔∇ℎℎ − 𝑓𝑘 × 𝑉 ∗′

−
1

𝜌
∇𝑝 = −𝑔∇ℎℎ



∇. (𝑢, 𝑣, 𝑤) = 0

Mass conservation for a constant density flow has the simple form
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𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑓𝑢 + 𝑔

𝜕ℎ

𝜕𝑦
= 0

𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
+ 𝑣

𝜕ℎ

𝜕𝑦
+ ℎ(

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) = 0

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
− 𝑓𝑣 + 𝑔

𝜕ℎ

𝜕𝑥
= 0

൝

The shallow water equations consist of

The linearized momentum equation mass continuity equations are: 

𝜕𝑢′

𝜕𝑡
= −𝑔

𝜕ℎ′

𝜕𝑥
+ 𝑓𝑣′

𝜕𝑣′

𝜕𝑡
= −𝑔

𝜕ℎ′

𝜕𝑦
− 𝑓𝑢′

𝜕ℎ′

𝜕𝑡
= − ሜℎ(

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
)

Primes denote perturbation values, that is, departures from
the state of rest.

These equations represent a set of three coupled first-
order partial differential equations in the unknown𝑢′, 𝑣′, ℎ′



One approach to solving these equations is to form and solve a single third-order partial
differential equation.

𝜕

𝜕𝑡
This is accomplished by taking of the third equation, which gives

𝜕2ℎ′

𝜕𝑡2
= − ሜℎ(

𝜕2𝑢′

𝜕𝑡𝜕𝑥
+
𝜕2𝑣′

𝜕𝑡𝜕𝑦
)

The terms on the right side of this equation may be replaced using the first two equations of

𝜕2ℎ′

𝜕𝑡2
= − ሜℎ(𝑔∇ℎ

2ℎ′ − 𝑓𝜁′)

Again take     which gives the third-order equation
𝜕

𝜕𝑡

𝜕3ℎ′

𝜕𝑡3
+ (𝑓2 − 𝑔 ሜℎ∇ℎ

2)
𝜕ℎ′

𝜕𝑡
= 0 ∗
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where is replaced using the linearized version of

(noting that f is taken constant here):

𝜕𝜁′/𝜕𝑡
𝑑ℎ
𝑑𝑡

(𝜁 + 𝑓) = −(𝜁 + 𝑓)(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)

𝜕𝜁′

𝜕𝑡
= −𝑓(

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
)

Assuming that the lateral boundaries are periodic and, since the coefficients                                

constant, we may assume wave solutions of the form

𝑓 𝑎𝑛𝑑 𝑔 ሜℎ

ℎ′ = Re 𝐴𝑒𝑖(𝑘𝑥+𝑙𝑦−𝜔𝑡) ∗′

Using *’ in *gives a cubic polynomial for the frequency

𝜔3 −𝜔 𝑓2 + 𝑔 ሜℎ(𝑘2 + 𝑙2) = 0
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This is the dispersion relationship for shallow water waves.

𝜔 ≠ 0𝜔 = 0Clearly is a solution, and if , then

𝜔2 = 𝑓2 + 𝑔 ሜℎ(𝑘2 + 𝑙2)

For readers familiar with linear algebra, we note an alternative solution method.

The solution of the form for h’ , u‛, and v’ , and substituting

directly into

ℎ′ = Re 𝐴𝑒𝑖(𝑘𝑥+𝑙𝑦−𝜔𝑡)

𝜕𝑢′

𝜕𝑡
= −𝑔

𝜕ℎ′

𝜕𝑥
+ 𝑓𝑣′

𝜕𝑣′

𝜕𝑡
= −𝑔

𝜕ℎ′

𝜕𝑦
− 𝑓𝑢′

𝜕ℎ′

𝜕𝑡
= − ሜℎ(

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
)

converts the set of partial differential equations to algebraic equations

𝐴𝑥 = 0

that may be written as
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where x is the column vector of the unknowns 
𝑢′

𝑣′

ℎ′

−𝑖𝜔 −𝑓 𝑖𝑘𝑔
𝑓 −𝑖𝑣 𝑖𝑙g
ሜℎ𝑘 − ሜℎ𝑙 − 𝜔

𝑢′

𝑣′

ℎ′

A nontrivial solution to is obtained only if A is not invertible.

This is enforced by setting the determinant of A to zero, which gives

𝜔3 −𝜔 𝑓2 + 𝑔 ሜℎ(𝑘2 + 𝑙2) = 0


