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Fourier Series

Each wave package (disturbance) can be represented as a sum of waves.
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Fourier Series

The representation of a perturbation as a simple sinusoidal wave might seem

an oversimplification, since disturbances in the atmosphere are never purely
sinusoidal.

It can be shown, however, that any reasonably well-behaved function of

longitude can be represented in terms of a zonal mean plus a Fourier series of
sinusoidal components:

f(x) = Z(AS sin kg x + B cos kg x)
s=1

2TCS
L

L is the distance around a latitude circle,

The zonal wave number (m1)

s, the planetary wave number, is an integer des designating the number of waves
around a latitude circle.
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Fourier Series
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(00)

f(x) = Z(AS sin kg x + Bg cos kg x)

: s=1
disturbance -

‘-kili"\[.lll.
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The coefficients A, are calculated by multiplying both sides of equ. by

2mnx
Sirl( 7 ) where n is an integer, and integrating around a latitude circle.

Applying the orthogonality relationships
L

~ 2msx | 2mnx {0 § =2
j sin sin dx =

T ) O O

L L L/2 Ss=n
0

2TTSX

j f(x) sin dx

2
In a similar fashuon multiplying bo‘rh sides in equ. by cos( Tx) and integrating
gves: 2TCSX

=ZJf(x)cos - dx

0
A, and B, are called the Fourier coefficients
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Dispersion and Group Velocity

Wave groups formed from two sinusoidal components of slightly different
wavelengths.
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For nondispersive waves, propagates without change of shape

Non-Dispersive Waves

N\ sometime later

* Some types of waves, such as acoustic waves, have phase
speeds that are independent of the wave number.

* In such nondispersive waves a spatially localized disturbance
consisting of a number of Fourier wave components (a wave
group) will preserve its shape as it propagates in space at the

phase speed of the wave.
£s$227
Pref, Jin-Yi Yu
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A Wave Solution Strategy

Approximations to the full equations governing atmospheric dynamics will be
solved for wave motions many times.

Even though aspects of each individual case are different, a guide to the general
approach to solving these problems isas follows:
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1. Choose a basic state

2. Linearize the governing equations

3. Assume wave solutions of the form in equation
£(x,9,t) = Re(Aeitx+y=00)_ po( 4,ity

(kx—wt
Fyel(x wt)

A A

4. Solve for the dispersion and polarization relationships
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Constructive Interference

VAVAVAVA
_|_

VVNVAN

Destructive Interference
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SIMPLE WAVE TYPES

Waves in fluids result from the action of restoring forces on fluid parcels that have
been displaced from their equilibrium positions.
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The restoring forces may be due to compressibility, gravity, rotation, or
electromagnetic effects.

This section considers the two simplest examples of linear waves in fluids:

1) acoustic waves
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Acoustic (Sound) Waves

1) Sound waves, or acoustic waves, are longitudinal waves

2) Sound is propagated by the alternating adiabatic compression and expansion of
the medium.

As an example,
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Describe mathematiclly

1) the perturbation method

2) adiabatic

P
-
I
e
—
.
—
e
——
-

3) waves propagating in a straight pipe parallel to the x axis (one-dimensional sound)

4) To exclude the possibility of transverse oscillations (for simplicity) we assume:

V = (u,0,0) and u = u(x,t)

the momentum equation,

A A

T T

With these restrictions, ) thermodynamic energy equation

continuity equation

for adiabatic motion are




momentum equation

continuity equation

thermodynamic energy equation
For adiabatic process
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Dividing through by T and again using the equation of state, we obtain the
entropy form of the first law of thermodynamics:
dInT

P4t dt

the rate of change of entropy per unit mass following the thermodynamically
reversible process. 13

A A
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9=T(%)R/CP dInb dlnT_Rdlnp

C =C
P dt P dt

Comparing *, we ontain Cy dIn6 —

|

where for this case

_ P Po.g R
6_(,0_R)(?) /ep —>ln9=ln%+lnp p —Inp

din6  dlnp 1dlnp

1-R ¢
at dt 'y dt

0 where
Cp Cp
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where p, =1000 hPa, we may eliminate 6 in ding — 0

ldlnp dlnp
y dt dt

I O O R S R

Eliminating p

The perturbation method
u(x,t) =u+u'(x,t)

p(x,t) =p+p'(xt)

p(x,t) = p+p'(x, )
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du 10
Substituting info ——+ ;£ -0 ad 1¢lnp Ou_
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%(ﬁ+p’) i (E+u’)%{ﬁ+p’}+r (ﬁ+p’)£{i+u’}=ﬂ

015 < 1 we can use the binomial expansion to approximate the density term as

ry —1 /
_1 ,=;(1+:) é(l—p—)
(e+p) P 0 7

we obtain the linear perturbation equations

<a+ui> o' _ 0 0N, o
ot ox) pox ot T Uox)P TP =

A A

T T




d 0
Eliminate u’ by applying (5( + ﬂa> on *
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which is a form of the standard wave equation familiar from electromagnetic
theory. A simple solution representing a plane sinusoidal wave propagating in X is

A A

pr — A eik(x—ct)

the assumed solution
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p' = A plk(x—ct)

02
_ ! — (—7 1) 2!
0x6t+u 322 )p (—ikc + iku)“p

T ) O O

02 ! )/p
= 2 (ik)2p’
(e T %(ik)z —0

Dispersion relation

Solving for c gives

| I O O A

the phase speed
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the speed of wave propagation relative to the zonal current is
C— U= TCs

where &s =, /VRT is called the adiabatic speed of sound
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The mean zonal velocity here plays only a role of Doppler shifting the sound wave so
that the frequency relative to the ground corresponding to a given wave number K is:

w=kc=k(u+c)

Thus, in the presence of a wind, the frequency as heard by a fixed observer
depends on the location of the observer relative to the source.

A A

e
B
=2
Ed
=
=
B d
=
-
B
e d
=
—
_—
B
Ead
B
=
.
Bt
= 4
=
e
-
B
B




\

\.

\

if @>0

The frequency of a stationary source will appear to be higher for an observer to the
east (downstream) of the source

C=1U-tc;

o

than for an observer to the west (upstream) of the source

C=1U— Cg
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