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Vorticity

Vorticity is the microscopic measure of spin and rotation in a fluid.

—

Vorticity is defined as the curl of the velocity: V xV
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Absolute vorticity (inertial reference frame): _,a =V
\%

Relative vorticity (relative to rotating earth): o=



Vorticity

Positive (cyclonic in NH)

Negative (anticyclonic in NH)
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Expansion of relative vorticity into Cartesian components:
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For large scale dynamics, the vertical component of vorticity is most important.
The vertical components of absolute and relative vorticity in vector notation are:

¢ = IZ(V ><\7) relative vorticity From now on, vorticity implies
the  vertical  component

n= R _ (V X\7a) absolute vorticity (unless otherwise stated.)



The absolute vorticity is equal to the relative vorticity plus the earth'’s vorticity. Since
the earth's vorticity is

A

K-(VxV, )=20@sing = f

then
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For large scale circulations, a typical magnitude for vorticity is

U 5 -1
~—=10"s
- L



n=¢+f1

Planetary Vorticity is spin produced by earth's rotation

f =2QsIin g

Maximum spin

Component of earth's rotation
oriented around local vertical

Always positive in  Northern
Hemisphere O at equator, increases
northward S

Equator

Slight spin




FLUID ROTATION
Circulation and Vorticity




Circulation and Vorticity

Two primary measures of rotation in a fluid

By convention, both circulation and vorticity are positive in the counterclockwise direction.

(cyclonic in the Northern Hemisphere)

Circulation:

Macroscopic measure of rotation for a finite area of the fluid = integration of the tangential
component of velocity around a closed path

Vorticity: The tendency to spin about an axis; Microscopic measure of rotation at any point in
the fluid
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Circulation: The tendency for a group of air parcels to rotate.
If an area of atmosphere is of interest, you compute the circulation.

Vorticity: The tendency for the wind shear at a given point to induce rotation.

If a point in the atmosphere is of interest, you compute the vorticity



THE CIRCULATION THEOREM

The circulation, C, about a closed contour in a fluid is defined as the line integral evaluated
along the contour of the component of the velocity vector that is locally tangent to the
contour:

C :9‘;\7.qu :Eﬁ\V\cost di

Arbitrary blob of fluid
rotating in a horizontal plane

Where | (S) is a position vector extending from the origin to the point s(x, y, z) on the
contour C,

dl represents the limit of Sl =1 (s+8s)—1(s) as 5s — 0.

Hence, as indicated in Fig.,d| is a displacement vector locally tangent to the contour. ..



By convention the circulation is taken to be positive if C > O for counterclockwise integration
around the contour.

That circulation is a measure of rotation is demonstrated readily by considering a circular

ring of fluid of radius R in solid-body rotation at angular velocity about the z axis.

In this case, U= Q X R . where R is the distance from the axis of rotation to
the ring of fluid.

Thus the circulation about the ring is given by

C — 9§\7.dr :TQRZM = 2QR?

In this case the circulation is just 2m times the angular momentum of the fluid ring about the

axis of rotation.
Alternatively, note that C/(mR?) = 2() so that the circulation divided by the area enclosed by

the loop is just twice the angular speed of rotation of the ring.
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Girculation and Vorticity

The relationship between relative vorticity and circulation can be seen by considering the
following expression, in which we will define the relative vorticity as the circulation about a
closed contour in the horizontal plane divided by the area enclosed by that contour, in the limit

as the area approaches zero.

V.dl
u+%“5y_> §=Iim§ C:EﬁudXJrde
< A—0 A
I I Evaluating V .dl  for each side of
" % 1 v+%5x the rectangle yields the circulation:
U éC:u5x+(v+aV5xj5y— u+a—u5y X —V Oy
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Circulation, Vorticity, and Stokes Theorem

In more general terms the relationship between vorticity and circulation is given simply by
Stokes's theorem applied to the velocity vector:

§\7 dl = j jA(vXV).ﬁdA

Here A is the area enclosed by the contour and n is a unit normal fo the area element dA
(positive in the right sense).
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Thus, Stokes's theorem states that the circulation about any closed loop is equal to the
integral of the normal component of vorticity over the area enclosed by the contour.

Hence, for a finite area, circulation divided by area gives the average normal component of
vorticity in the region.

As a consequence, the vorticity of a fluid in solid-body rotation is just fwice the angular
velocity of rotation.

Vorticity may thus be regarded as a measure of the local angular velocity of the fluid.

20



Applications:

Cyclones & Tornado's
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Vorticity in Natural Coordinates

Using natural coordinates can make it easier to physically interpret the relationship between
relative vorticity and the flow.

To express vorticity in natural coordinates, we compute the circulation around the
infinitesimal contour shown below.

OC =V | +d(%)]- (v +2—\;5nj53

From the diagram, d(&5) = 68 onh, where dg is the
angular change in wind direction in the distance ds.

éC:(—— +V aﬁ)aws
on oS

Or in the limit dnds — O

¢ = lim ——=—-——+_— whereR;is the radius of curvature of the streamlines

nE->0NE  on R,
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Vorticity in natural coordinates: =

S

It is now apparent that the net vertical vorticity component is the result of the sum of two
parts:

_ 0V The rate of change of wind speed normal to the direction of flow, which is called
on The shear vorticity.

A
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+ planetary vorticity
- relative vortcity
(vort min)

+ planetary vorticity
- relative vorticity
(vort min)
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Vorticity Maximum: Along the trough axis to left of the strongest flow. Both shear and curvature
terms are positive.

Vorticity Minimum: Along the ridge axis to right of the strongest flow. Both shear and curvature
terms are negative. 2
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In a mass of continuum that is rotating like a rigid body, the vorticity is twice the angular
velocity vector of that rotation.

This is the case, for example, of water in a tank that has been spinning for a while around its
vertical axis, at a constant rate.

Rigid-body-like vortex
VXTI



The vorticity may be nonzero even when all particles are flowing along straight and
parallel pathlines, if there is shear (that is, if the flow speed varies across streamlines).

For example, in the laminar flow within a pipe with constant cross section all particles travel
parallel to the axis of the pipe; but faster near that axis, and practically stationary next to
the walls.

The vorticity will be zero on the axis, and maximum near the walls, where the shear is largest.

Parallel flow with shear



Conversely, a flow may have zero vorticity even though its particles travel along curved
trajectories.

An example is the ideal irrotational vortex, where most particles rotate about some straight
axis, with speed inversely proportional to their distances to that axis. A small parcel of
continuum that does not straddle the axis will be rotated in one sense but sheared in the
opposite sense, in such a way that their mean angular velocity about their center of mass is
zero.

Irrotational vortex
vx 1/r



