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Vorticity

Vorticity is the microscopic measure of spin and rotation in a fluid.

Vorticity is defined as the curl of the velocity: V




Wind direction varies → clockwise spin

Wind speed varies → clockwise spin

Absolute vorticity (inertial reference frame):

Relative vorticity (relative to rotating earth):
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Vorticity

Curvature 
vorticity

Shear 
vorticity
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Expansion of relative vorticity into Cartesian components:

For large scale dynamics, the vertical component of vorticity is most important. 

The vertical components of absolute and relative vorticity in vector notation are:

relative vorticity
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absolute vorticity
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From now on, vorticity implies
the vertical component
(unless otherwise stated.)
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The absolute vorticity is equal to the relative vorticity plus the earth’s vorticity. Since 
the earth’s vorticity is

For large scale circulations, a typical magnitude for vorticity is
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Planetary Vorticity is spin produced by earth's rotation

Component of earth's rotation
oriented around local vertical

Always positive in Northern
Hemisphere 0 at equator, increases
northward

f+= 

sin2=f
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FLUID ROTATION

Circulation and Vorticity

12



Circulation and Vorticity

Two primary measures of rotation in a fluid

Circulation:
Macroscopic measure of rotation for a finite area of the fluid = integration of the tangential 
component of velocity around a closed path

Vorticity:  The tendency to spin about an axis;  Microscopic measure of rotation at any point in 
the fluid

By convention, both circulation and vorticity are positive in the counterclockwise direction.

(cyclonic in the Northern Hemisphere)
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Circulation:The tendency for a group of air parcels to rotate.

If an area of atmosphere is of interest, you compute the circulation.

Vorticity: The tendency for the wind shear at a given point to induce rotation. 

If a point in the atmosphere is of interest, you compute the vorticity
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Arbitrary blob of fluid 
rotating in a horizontal plane

THE CIRCULATION THEOREM

The circulation, C, about a closed contour in a fluid is defined as the line integral evaluated 
along the contour of the component of the velocity vector that is locally tangent to the 
contour: 

Hence, as indicated in Fig.,      is a displacement vector locally tangent to the contour.

Where              is a position vector extending from the origin to the point s(x, y, z) on the 
contour C, 

( )l s

represents the limit of ( ) ( )  0.l l s s l s as s  = + − →dl

dl

.C V dl cos  V dl
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By convention the circulation is taken to be positive if C > 0 for counterclockwise integration
around the contour.

That circulation is a measure of rotation is demonstrated readily by considering a circular

ring of fluid of radius R in solid-body rotation at angular velocity about the z axis.

Thus the circulation about the ring is given by

In this case the circulation is just 2π times the angular momentum of the fluid ring about the

axis of rotation.
Alternatively, note that C/(πR2) = 2Ω so that the circulation divided by the area enclosed by

the loop is just twice the angular speed of rotation of the ring.
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22 R= .C V dl
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Circulation and Vorticity

The relationship between relative vorticity and circulation can be seen by considering the
following expression, in which we will define the relative vorticity as the circulation about a
closed contour in the horizontal plane divided by the area enclosed by that contour, in the limit
as the area approaches zero.
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Evaluating for each side ofldV
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relative vorticity= =
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Circulation, Vorticity, and Stokes Theorem

dAnVldV
A  = ˆ).(.



In more general terms the relationship between vorticity and circulation is given simply by
Stokes’s theorem applied to the velocity vector:

Here A is the area enclosed by the contour and n is a unit normal to the area element dA
(positive in the right sense).
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Thus, Stokes’s theorem states that the circulation about any closed loop is equal to the
integral of the normal component of vorticity over the area enclosed by the contour.

Hence, for a finite area, circulation divided by area gives the average normal component of
vorticity in the region.

As a consequence, the vorticity of a fluid in solid-body rotation is just twice the angular 
velocity of rotation. 

Vorticity may thus be regarded as a measure of the local angular velocity of the fluid.
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Applications:

Cyclones & Tornado’s
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Vorticity in Natural Coordinates

Using natural coordinates can make it easier to physically interpret the relationship between
relative vorticity and the flow.

To express vorticity in natural coordinates, we compute the circulation around the
infinitesimal contour shown below.

From the diagram, d(s) = b n, where db is the 
angular change in wind direction in the distance ds.
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where Rs is the radius of curvature of the streamlines 
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The rate of change of wind speed normal to the direction of flow, which is called 
the shear vorticity.

sR

V
The turning of the wind along a streamline, which is called the curvature vorticity.

It is now apparent that the net vertical vorticity component is the result of the sum of two 
parts: 

23



24



sR

V

n

V
+




−=

25

Vorticity Maximum: Along the trough axis to left of the strongest flow. Both shear and curvature 
terms are positive.

Vorticity Minimum: Along the ridge axis to right of the strongest flow. Both shear and curvature 
terms are negative.
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Absolute vorticity =  + f 27
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In a mass of continuum that is rotating like a rigid body, the vorticity is twice the angular
velocity vector of that rotation.

This is the case, for example, of water in a tank that has been spinning for a while around its
vertical axis, at a constant rate.

Rigid-body-like vortex

v ∝ r
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The vorticity may be nonzero even when all particles are flowing along straight and
parallel pathlines, if there is shear (that is, if the flow speed varies across streamlines).

For example, in the laminar flow within a pipe with constant cross section all particles travel
parallel to the axis of the pipe; but faster near that axis, and practically stationary next to
the walls.

The vorticity will be zero on the axis, and maximum near the walls, where the shear is largest.

Parallel flow with shear
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Conversely, a flow may have zero vorticity even though its particles travel along curved
trajectories.

An example is the ideal irrotational vortex, where most particles rotate about some straight
axis, with speed inversely proportional to their distances to that axis. A small parcel of
continuum that does not straddle the axis will be rotated in one sense but sheared in the
opposite sense, in such a way that their mean angular velocity about their center of mass is
zero.

Irrotational vortex
v ∝ 1/r


