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Total Differentiation of a Vector in a Rotating Frame of Reference

Before we can write Newton's second law of motion for a reference frame rotating with the
earth, we need to develop a relationship between the total derivative of a vector in an inertial
reference frame and the corresponding derivative in a rotating system.
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Let A beanarbitrary vector with Cartesian components

A = AX|A + Ay j - Azk in an inertial frame of reference, and

(LI A)’(I "+ A;, j' - A; o i rotating frame of reference
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Since the coordinate axes are in an inertial frame of reference,
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(Eq. 1)

¥ A= A)’(iA' 1 A; j' i A;k' in a rotating frame of reference, then
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Because the left hand sides of (Eq. 1) and (Eq. 2) are identical,
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Regrouping the terms
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To interpret , —
dt dt
think of each unit vector as a position vector

linear velocity = angular velocity x position vector

V =QxF
Because \7:d_r, d—rZQXF
dt dt
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This equation provides us with a formal way of expressing the balance of forces on a fluid parcel
in a rotating coordinate system.




Newton's second law in an inertial reference frame:

To transform to rotating coordinates:
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av) - _XF
dt inertial m

I is the position vector for an air
parcel on the rotating earth

~V +OxT Velocity is the rate of change of the

position vector with time

Using the transformation
of the total derivative
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Substituting into Newton's second law:

av) & _2F
dt inertial m

" q =
d—v+2Q><v — QPR =& _
dt m

If the real forces acting on a fluid parcel are the pressure gradient force, gravitation and friction,
then
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Rate of change of relative  Coriolis Pressure gradient  Gravity term  Friction
velocity following the  acceleration force (per unit mass) (gravitation +
relative motion ina centrifugal)

rotating reference frame.

Vector momentum equation in rotating coordinates



Momentum Equations in Spherical Coordinates

For a variety of reasons, it is useful to express the vector momentum equation for a rotating
earth as a set of scalar component equations.

The use of latitude-longitude coordinates to describe positions on earth's surface makes it
convenient to write the momentum equations in spherical coordinates.

The coordinate axes are (1,¢4,z)

Where,

A is longitude,
¢ is latitude,
z is height.




Orientation of Coordinate Axes

The x- and y-axes are customarily defined to point east and north, respectively, such that
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Thus the velocity components are
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The unit vectors in the spherical coordinate system are functions of position

The (x,y,z) coordinates system defined in this way is not a Cartesian coordinates system |,
because the directions of the unit vectors depend on their position on the earth's surface.

This position dependence of the unit vectors must be taken into account when the acceleration
vector is expended into its components on the sphere. Thus, we write:
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We need to determine
what these are



