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Total Differentiation of a Vector in a Rotating Frame of Reference

Before we can write Newton’s second law of motion for a reference frame rotating with the
earth, we need to develop a relationship between the total derivative of a vector in an inertial
reference frame and the corresponding derivative in a rotating system.
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in an inertial frame of reference, then
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Since the coordinate axes are in an inertial frame of reference,
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(Eq. 1)
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in a rotating frame of reference, thenIf
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(Eq. 2)

Because the left hand sides of (Eq. 1) and (Eq. 2) are identical,
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Regrouping the terms
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effects of rotation
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To interpret

think of each unit vector as a position vector

linear velocity = angular velocity x position vector
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This equation provides us with a formal way of expressing the balance of forces on a fluid parcel 
in a rotating coordinate system.

(effects of rotation)



m

F

dt

Vd

inertial


=















Newton’s second law in an inertial reference frame:

To transform to rotating coordinates:
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is the position vector for an air 

parcel on the rotating earth
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Velocity is the rate of change of the 
position vector with time

Using the transformation 
of the total derivative
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Using some vector identities and defining as a
vector perpendicular to the axis of rotation with
magnitude equal to the distance to the axis of
rotation.
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 R


Acceleration following 
the motion in an 
inertial system Centrifugal 

acceleration

Coriolis 
acceleration

Rate of change of relative velocity 
following the relative motion in a 

rotating reference frame.
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Substituting into Newton’s second law:

If the real forces acting on a fluid parcel are the pressure gradient force, gravitation and friction, 
then

m

F
RV

dt

Vd

m

F

dt

Vd

inertial





=−+

=




















22



rFgpV
dt

Vd 


++−−=



1

2

Rate of change of relative 
velocity following the 
relative motion in a 

rotating reference frame.

Coriolis 
acceleration

Pressure gradient 
force (per unit mass)

Gravity term 
(gravitation + 
centrifugal)

Friction

Vector momentum equation in rotating coordinates



Momentum Equations in Spherical Coordinates

For a variety of reasons, it is useful to express the vector momentum equation for a rotating
earth as a set of scalar component equations.

The use of latitude-longitude coordinates to describe positions on earth’s surface makes it
convenient to write the momentum equations in spherical coordinates.

The coordinate axes are (l,,z) 

Where, 

l is longitude, 

 is latitude, 

z is height.
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Orientation of Coordinate Axes

ll daRddx cos==

The x- and y-axes are customarily defined to point east and north, respectively, such that
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The unit vectors in the spherical coordinate system are functions of position
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The (x,y,z) coordinates system defined in this way is not a Cartesian coordinates system ,
because the directions of the unit vectors depend on their position on the earth’s surface.

This position dependence of the unit vectors must be taken into account when the acceleration
vector is expended into its components on the sphere. Thus, we write:
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We need to determine 
what these are


