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Horizontal momentum equation scaled for
midlatitude large-scale motions.
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To transform to pressure coordinates, we need fo tfransform the pressure gradient term:
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Characteristics of pressure (isobaric) coordinates:

Vertical velocity is expressed as o = dp/dt.

Rising air moves from higher to lower pressure, so upward motion occurs when o < O.

The geopotential height gradient takes the place of the pressure gradient.

Low geopotential height on an isobaric surface are analogous to low pressure on a surface chart.

Expansion of the total derivative takes the following form:
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pressure at a constant level is similar to
geopotential height at constant pressure
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The Basic Conservation Laws

Atmospheric motions are governed by three fundamental physical principles:

Conversation of mass
Conversation of momentum

Conversation of energy

The mathematical relations that express these laws may be derived by considering the budgets

of mass, momentum, and energy for an infinitesimal control volume in the fluid.



Two types of control volume are commonly used in fluid dynamics:

Eulerian frame

Lagrangian frame

In the Eulerian frame of reference the control volume consists of a parallelepiped of sides d8x,

dy, 6z, whose position is fixed relative to the coordinate axes.

In the Lagrangian frame the control volume consists an infinitesimal mass of "tagged” fluid
particle; thus, the control volume moves about following the motion of the fluid, always

containing the same fluid particles.
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Expansion of Total Derivative
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u = west-east component of fluid velocity
v = south-north component of fluid velocity
w = vertical component of fluid velocity
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Term A: Total rate of change of f following the fluid motion
Term B Local rate of change of f at a fixed location

Term C: Advection of f in x direction by the x-component flow
Term D: Advection of f in y direction by the y-component flow
Term E: Advection of f in z direction by the z-component flow
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Total Derivative vs. Local Derivative
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Total derivative is the temporal rate of change following the fluid
motion.

Example: A thermometer measuring changes as a balloon floats
through the atmosphere.

Local derivative is the femporal rate of Change at a fixed point. Q

Example: An observer measures changes in temperature at a
weather station.
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Advection Terms

Assume that thin lines are contours of a scalar quantity f
and thick arrows indicate the fluid motion.

We wish to evaluate the advection term
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low high

Transport from low to high:
“negative advection of f

“neutral advection of f

Transport from high to low:
“positive advection of f
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Taylor Series

A function f(x) can be computed by Taylor expansion given the values of the function and its
derivatives at a point x:

A truncated Taylor series can be used to approximate f(x).
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