

Horizontal momentum equation scaled for midlatitude large-scale motions.

To transform to pressure coordinates, we need to transform the pressure gradient term:

$$
\begin{array}{rlr}
\nabla_{p} p=\nabla_{z} p+\frac{\partial p}{\partial z} \nabla_{p} z & \frac{\partial p}{\partial z}=-\rho g \\
\nabla_{z} p=-\frac{\partial p}{\partial z} \nabla_{p} z & \nabla_{z} p=\rho g \nabla_{p} z
\end{array}
$$

$$
\begin{aligned}
& -\frac{1}{\rho} \nabla_{z} p=-g \nabla_{p} z=-\nabla_{p} \Phi \\
& \text { Geopotential } \\
& \text { gradient } \\
& \frac{d \vec{V}}{d t}=-2 \vec{\Omega} \times \vec{V}-\nabla_{p} \Phi \\
& \text { or } \\
& \frac{d \vec{V}}{d t}=-2 \vec{\Omega} \times \vec{V}-g \nabla_{p} Z
\end{aligned}
$$

Characteristics of pressure (iso6aric) coordinates:

Vertical velocity is expressed as $\omega=d p / d t$.
Rising air moves from higher to lower pressure, so upward motion occurs when $\omega<0$.

The geopotential height gradient takes the place of the pressure gradient.
Low geopotential height on an isobaric surface are analogous to low pressure on a surface chart.
Expansion of the total derivative takes the following form:

$$
\begin{aligned}
& \frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial x}{\partial t} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial f}{\partial y}+\frac{\partial p}{\partial t} \frac{\partial f}{\partial p} \\
& \frac{d f}{d t}=\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+\omega \frac{\partial f}{\partial p}
\end{aligned}
$$

thickness between two pressure levels is similar to temperature at an intermediate pressure level

Surface Map

solid: pressure at sea level
dashed: thickness between 1000 hPa and 500 hPa

850 hPa Map

black: geopotential height at 850 hPa color: temperature at 850 hPa

The Basic Conservation Laws

Atmospheric motions are governed by three fundamental physical principles:

Conversation of mass

Conversation of momentum

Conversation of energy

The mathematical relations that express these laws may be derived by considering the budgets of mass, momentum, and energy for an infinitesimal control volume in the fluid.

Two types of control volume are commonly used in fluid dynamics:

Eulerian frame

Lagrangian frame

In the Eulerian frame of reference the control volume consists of a parallelepiped of sides δx, $\delta y, \delta z$, whose position is fixed relative to the coordinate axes.

In the Lagrangian frame the control volume consists an infinitesimal mass of "tagged" fluid particle; thus, the control volume moves about following the motion of the fluid, always containing the same fluid particles.

$$
\begin{aligned}
& f=f(x) \rightarrow \frac{d f}{d x} \\
& f=f(x, t) \rightarrow \frac{\partial f}{\partial x}, \frac{\partial f}{\partial t} \\
& f=f(x, y, z ; t)
\end{aligned}
$$

Expansion of Total Derivative

$$
\begin{gathered}
\text { If } f=f(x, y, z ; t) \quad \text { then } \\
\delta f=\left(\frac{\partial f}{\partial t}\right) \delta t+\left(\frac{\partial f}{\partial x}\right) \delta x+\left(\frac{\partial f}{\partial y}\right) \delta y+\left(\frac{\partial f}{\partial z}\right) \delta z+H . O \cdot T \\
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
\begin{aligned}
B u t
\end{aligned} \quad u=\frac{d x}{d t}, \quad v \equiv \frac{d y}{d t}, \quad w \equiv \frac{d z}{d t} \\
u
\end{gathered}
$$

$$
\begin{array}{r}
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
\frac{d f}{d t}=\frac{\partial f}{\partial t}+u \frac{v}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z} \\
\mathcal{A} \quad \mathscr{B} \quad C
\end{array}
$$

$$
w
$$

Term A: Total rate of change of f following the fluid motion
Term B Local rate of change of f at a fixed location
Term C: Advection of f in x direction by the x-component flow
Term D: Advection of f in y direction by the y-component flow Term E: Advection of f in z direction by the z-component flow

Total Derivative vs. Local Derivative

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\vec{U} \cdot \nabla f \quad \frac{\partial f}{\partial t}=\frac{d f}{d t}-\vec{U} \cdot \nabla f
$$

Total derivative is the temporal rate of change following the fluid motion.

Example: A thermometer measuring changes as a balloon floats through the atmosphere.

Local derivative is the temporal rate of Change at a fixed point.
Example: An observer measures changes in temperature at a weather station.

Advection Terms

Assume that thin lines are contours of a scalar quantity f and thick arrows indicate the fluid motion.

We wish to evaluate the advection term

high

$$
-u \frac{\partial f}{\partial x}
$$

At point A:

$$
u>0, \frac{\partial f}{\partial x}>0 \rightarrow u \frac{\partial f}{\partial x}>0
$$

$$
u=0, \frac{\partial f}{\partial x}>0 \rightarrow u \frac{\partial f}{\partial x}=0
$$

\Rightarrow "neutral advection of f

At point C:

$$
u<0, \frac{\partial f}{\partial x}>0 \rightarrow u \frac{\partial f}{\partial x}<0
$$

\Rightarrow Transport from high to low: "positive advection of f

 كَرد جقّر است؟

$$
\begin{array}{cl}
\frac{\partial p}{\partial x}=-0.3 \mathrm{kpa} / 180 \mathrm{~km} & \frac{d p}{d t}=-0.1 \mathrm{kpa} / 3 \mathrm{hr} \\
u=10 \mathrm{~km} / \mathrm{hr} & \frac{\partial p}{\partial t}=? \\
\frac{d p}{d t}=\frac{\partial p}{\partial t}+u \frac{\partial p}{\partial x} \\
\frac{\partial p}{\partial t}=-0.1 \mathrm{kpa} / 3 \mathrm{hr}-(10 \mathrm{~km} / \mathrm{hr})\left(\frac{-0.3 \mathrm{kpa}}{180 \mathrm{~km}}\right)=-0.1 \mathrm{kpa} / 6 \mathrm{hr}
\end{array}
$$

Taylor Series

A function $f(x)$ can be computed by Taylor expansion given the values of the function and its derivatives at a point x_{0} :

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\ldots \\
& f(x)=f\left(x_{0}\right)+\sum_{n=1}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

A truncated Taylor series can be used to approximate $f(x)$.

