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Definition:

The geopotential height (Z) is the actual height normalized by the globally averaged

acceleration due to gravity at the Earth’s surface (g0 = 9.81 m s-2), and is defined by:

Used as the vertical coordinate in most atmospheric applications in which energy plays an

important role (i.e. just about everything)
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We can define a quantity called the geopotential, which is related to gravity. 

Gravity can be represented as the gradient of the geopotential. 

Because

If the value of the geopotential is set to zero at mean sea level, the geopotential Φ(z) at

height z is the work required to raise a unit mass to height z from mean sea level:

then

Units of geopotential are J kg-1, 
which are equivalent to m2 s-2.
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go is a constant (9.8 ms-2). In the lower atmosphere, Z is very close to z (called the ‘geometric

height’). The table below shows how Z, z, and g vary with height at a typical mid-latitude

location.
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Geopotential => Potential energy per unit mass 5



The value highlighted in yellow located in the upper right corner (in the diagram above)
represents the geopotential height of a given pressure surface in meters (as reported by
weather balloons).
Geopotential Height approximates the actual height of a pressure surface above mean sea-
level. Therefore, for the example given above, the height of the pressure surface on which
the observation was taken is 5800 meters.

When a collection of geopotential height reports are contoured on a given pressure surface,
we are able to identify upper air troughs and ridges, which are very important influences on

surface weather conditions.

Geopotential Height 
upper air station reports 
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Geopotential height 500 hPa [gpdm]

Fri 10 Apr, 16:00 BST (15:00 UTC)

http://www.weatheronline.co.uk/
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Troughs
upper level lows 

When the height contours bend strongly to the south, (as in the diagram below), it is called a 

TROUGH. 

Strong troughs are typically preceded by stormy weather and colder air at the surface. Below 

is an example of a trough in an upper-level height field (red contours). 

The trough axis is denoted by the purple line. 
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Ridges 

upper level highs 

When the height contours bend strongly to the north (as in the diagram below), this is known as 

a RIDGE. 

Strong ridges are accompanied by warm and dry weather conditions at the surface. Below is an 

example of a ridge in an upper-level height field (red contours). 

The purple line denotes the ridge axis. 
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Derivation:

If we combine the Hydrostatic Equation with the Ideal Gas Law for moist air and the

Geopotential Height, we can derive an equation that defines the thickness of a layer between

two pressure levels in the atmosphere

1. Substitute the ideal gas law into the Hydrostatic Equation

Hypsometric Equation
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Virtual Temperature: The temperature that a parcel of dry air would have if it were at the

same pressure and had the same density as moist air.

Derivation:

Start with ideal gas law for moist air:

d d v vP R T R T = +

Now treat moist air as if it were dry by introducing the virtual temperature Tv

( ) ( )d d v v d v d v d vP R R T R T R T    = + = + =

What is the relationship between the temperature, T and the virtual temperature Tv?

P = pressure

d = dry air density

v = vapor density

= air density

R= gas constant

Rv = vapor gas constant

Rd = dry air gas constant

T = Temperature

P RT=

( )1 0.61v vT r T= +
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2. Re-arranging the equation and using the definition of geopotenital height:
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3. Integrate this equation between two geopotential heights (Φ1 and Φ2) and the two

corresponding pressures (p1 and p2), assuming Tv is constant in the layer



4.  Performing the integration:

5.  Dividing both sides by the gravitational acceleration at the surface (g0):
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6.  Using the definition of geopotential height
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Defines the geopotential thickness (Z2 – Z1) between any two pressure levels (p1 and p2) in 

the atmosphere.

The layer thickness (Δ𝑧) is directly proportional to mean virtual temperature (𝑇v)
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Interpretation:

The thickness of a layer between two pressure levels is proportional to the mean virtual

temperature of that layer.

Black solid lines are 
pressure surfaces

Hurricane (warm core) Mid-latitude Low (cold core)
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If Tv decreases, the air between the two pressure levels compresses and the layer becomes

thinner. Pressure decreases rapidly with height

If Tv increases, the air between the two pressure levels expands and the layer becomes

thicker. Pressure decrease slowly with height
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Generalized Vertical Coordinates

The use of pressure as a vertical coordinate is a specific example of the use of generalized

vertical coordinates.

Any quantity s = s(x,y,z,t) that changes monotonically with height can be used as a vertical

coordinate.

If we wish to transform equations from (x,y,z) coordinates to (x,y,s) coordinates, derivatives

must be transformed.
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Pressure As A Vertical Coordinate

z = z3

z = z2

z = z0

z = z1

p = p0

p = p1

p = p2

p = p3

z3 > z2 > z1 > z0p3 > p2 > p1 > p0

How do we convert our equations from height coordinates (x,y,z) to pressure coordinates 

(x,y,p)?
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z=const
dx

dz

F1 F2

F3

Let F = some scalar property,
and

s = a generalized vertical coordinate.

We would like to transform derivatives such as
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can be written in vector form as
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horizontal derivatives in the momentum equation
from z-coordinates to p-coordinates.
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