

Geophysical Fluid Dynamics

Lecture 7

Sahraei

Physics Department, Razi University

https://sci.razi.ac.ir/~sahraei

Geopotential Height

Definition:

The geopotential height (Z) is the actual height normalized by the globally averaged acceleration due to gravity at the Earth's surface ($g_0 = 9.81 \text{ m s}^{-2}$), and is defined by:

 $Z = \frac{\Phi(z)}{g_0}$

Used as the vertical coordinate in most atmospheric applications in which energy plays an important role (i.e. just about everything)

We can define a quantity called the geopotential, which is related to gravity.

Gravity can be represented as the gradient of the geopotential.

$$\nabla \Phi = -\vec{g}$$

Because
$$\vec{g} = -g\hat{k}$$
, then $\Phi = \Phi(z)$, $\frac{d\Phi}{dz} = g$

If the value of the geopotential is set to zero at mean sea level, the geopotential $\Phi(z)$ at height z is the work required to raise a unit mass to height z from mean sea level:

$$\Phi = \int_0^z g \, dz$$

Units of geopotential are J kg⁻¹, which are equivalent to $m^2 s^{-2}$. g_{o} is a constant (9.8 ms⁻²). In the lower atmosphere, Z is very close to z (called the 'geometric height'). The table below shows how Z, z, and g vary with height at a typical mid-latitude location.

<i>Z</i> =	$\Phi(z)$	gz
	g_0	$980 cm s^{-1}$

z(km)	Z(km)	g(ms ⁻²)
0	0	9.802
1	1.000	9.798
10	9.986	9.771
20	19.941	9.741
30	29.864	9.710
60	59.449	9.620
90	88.758	9.531
120	117.795	9.443
160	156.096	9.327
200	193.928	9.214
300	286.520	8.940
400	376.370	8.677
500	463.597	8.427
600	548.314	8.186

$$Z = \frac{\Phi(z)}{g_0} = \frac{gz}{980cms^{-1}}$$

Geopotential Height

- Earth's gravity has Altitude and Latitude dependences.
- Overall these are minor (few tenths of a percent under conditions of interest to meteorologist).
- Geopotential Height allows us a new reference (or coordinate) to accommodate these changes in gravity.
- Geopotential height is a vertical coordinate referenced to Earth's mean sea level an adjustment to geometric height (elevation above mean sea level) using the variation of gravity with latitude and elevation.
- Thus it can be considered a "gravity-adjusted height".

Geometric vs. Geopotential Meters

Fig. 4.2

Geopotential => Potential energy per unit mass

Geopotential Height upper air station reports

The value highlighted in yellow located in the upper right corner (in the diagram above) represents the geopotential height of a given pressure surface in meters (as reported by weather balloons). Geopotential Height approximates the actual height of a pressure surface above mean sea-

level. Therefore, for the example given above, the height of the pressure surface on which the observation was taken is 5800 meters.

When a collection of geopotential height reports are contoured on a given pressure surface, we are able to identify upper air troughs and ridges, which are very important influences on surface weather conditions. Geopotential height 500 hPa [gpdm] Fri 10 Apr, 16:00 BST (15:00 UTC)

http://www.weatheronline.co.uk/

Troughs upper level lows

When the height contours bend strongly to the south, (as in the diagram below), it is called a TROUGH.

Strong troughs are typically preceded by stormy weather and colder air at the surface. Below is an example of a trough in an upper-level height field (red contours). The trough axis is denoted by the purple line.

Ridges upper level highs

When the height contours bend strongly to the north (as in the diagram below), this is known as a RIDGE.

Strong ridges are accompanied by warm and dry weather conditions at the surface. Below is an example of a ridge in an upper-level height field (red contours). The purple line denotes the ridge axis.

Hypsometric Equation

Derivation:

If we combine the Hydrostatic Equation with the Ideal Gas Law for moist air and the Geopotential Height, we can derive an equation that defines the thickness of a layer between two pressure levels in the atmosphere

1. Substitute the ideal gas law into the Hydrostatic Equation

$$\frac{dp}{dz} = -\rho g$$
$$p = \rho R_d T_v$$
$$\frac{dp}{dz} = \frac{-p g}{R_d T_v}$$

Virtual Temperature: The temperature that a parcel of dry air would have if it were at the same pressure and had the same density as moist air.

Derivation:

Start with ideal gas law for moist air:

 $P = \rho RT$ $P = \rho_{d} R_{d} T + \rho_{y} R_{y} T$

P = pressure $\rho_d = dry air density$ $\rho_v = vapor density$ $\rho = air density$ R = gas constant $R_v = vapor gas constant$ $R_d = dry air gas constant$ T = Temperature

Now treat moist air as if it were dry by introducing the virtual temperature T_v

 $P = (\rho_d R_d + \rho_v R_v)T = (\rho_d + \rho_v)R_d T_v = \rho R_d T_v$

What is the relationship between the temperature, T and the virtual temperature T_{v} ?

 $T_{v} = (1 + 0.61r_{v})T$

2. Re-arranging the equation and using the definition of geopotenital height:

$$\frac{dp}{dz} = \frac{-p g}{R_d T_v}$$

$$d\Phi = gdz = -R_d T_v \frac{dp}{p}$$

3. Integrate this equation between two geopotential heights (Φ_1 and Φ_2) and the two corresponding pressures (p_1 and p_2), assuming T_v is constant in the layer

$$\int_{\Phi_1}^{\Phi_2} d\Phi = -R_d T_v \int_{p_1}^{p_2} \frac{dp}{p}$$

4. Performing the integration:

$$\int_{\Phi_1}^{\Phi_2} d\Phi = -R_d T_v \int_{p_1}^{p_2} \frac{dp}{p}$$
$$\Phi_2 - \Phi_1 = -R_d T_v \ln\left(\frac{p_2}{p_1}\right)$$

5. Dividing both sides by the gravitational acceleration at the surface (g_0) :

$$\frac{\Phi_2}{g_0} - \frac{\Phi_1}{g_0} = -\frac{R_d T_v}{g_0} \ln\left(\frac{p_2}{p_1}\right)$$

6. Using the definition of geopotential height

$$\frac{\Phi_2}{g_0} - \frac{\Phi_1}{g_0} = -\frac{R_d T_v}{g_0} \ln\left(\frac{p_2}{p_1}\right)$$
$$Z_2 - Z_1 = -\frac{R_d T_v}{g_0} \ln\left(\frac{p_2}{p_1}\right) \quad \text{Hypsom}$$

-lypsometric Equation

Defines the geopotential thickness $(Z_2 - Z_1)$ between any two pressure levels (p_1 and p_2) in the atmosphere.

 \mathcal{S}_0

The layer thickness (Δz) is directly proportional to mean virtual temperature (Tv)

Interpretation:

The thickness of a layer between two pressure levels is proportional to the mean virtual temperature of that layer. $Z_2 - Z_1 = -\frac{R_d T_v}{g_0} \ln\left(\frac{p_2}{p_1}\right)$

If T_v decreases, the air between the two pressure levels compresses and the layer becomes thinner. Pressure decreases rapidly with height

Black solid lines are pressure surfaces

Generalized Vertical Coordinates

The use of pressure as a vertical coordinate is a specific example of the use of generalized vertical coordinates.

Any quantity s = s(x,y,z,t) that changes monotonically with height can be used as a vertical coordinate.

If we wish to transform equations from (x,y,z) coordinates to (x,y,s) coordinates, derivatives must be transformed.

Pressure As A Vertical Coordinate

How do we convert our equations from height coordinates (x,y,z) to pressure coordinates (x,y,p)?

Let F = some scalar property, and s = a generalized vertical coordinate.

We would like to transform derivatives such as

 $\left(\frac{\partial F}{\partial x}\right)_z$ to $\left(\frac{\partial F}{\partial x}\right)_s$

Derivative in x-direction on a constant z surface

Derivative in x-direction on a constant s surface

δx

F₁

5= const

-z=const

 F_3

δz

 F_2

$$\frac{F_3 - F_1}{\delta x} = \frac{F_2 - F_1}{\delta x} + \frac{F_3 - F_2}{\delta x} = \frac{F_2 - F_1}{\delta x} + \frac{F_3 - F_2}{\delta z} \frac{\delta z}{\delta x}$$

 $\left(\frac{\delta F}{\delta x}\right)_{a} = \left(\frac{\delta F}{\delta x}\right)_{a} + \frac{\delta F}{\delta z}\left(\frac{\delta z}{\delta x}\right)_{a}$

 $\left[\left(\frac{\partial F}{\partial x}\right)_{s} = \left(\frac{\partial F}{\partial x}\right)_{z} + \frac{\partial F}{\partial z}\left(\frac{\partial z}{\partial x}\right)_{s} - \nabla_{s}F = \left(\frac{\partial F}{\partial x}\right)_{s}\hat{i} + \left(\frac{\partial F}{\partial y}\right)_{s}\hat{j}$ $\left(\frac{\partial F}{\partial y}\right)_{s} = \left(\frac{\partial F}{\partial y}\right)_{z} + \frac{\partial F}{\partial z}\left(\frac{\partial z}{\partial y}\right)_{s} \qquad \nabla_{z}F = \left(\frac{\partial F}{\partial x}\right)_{z}\hat{i} + \left(\frac{\partial F}{\partial y}\right)_{z}\hat{j}$ $\nabla_s z = \left(\frac{\partial z}{\partial x}\right) \hat{i} + \left(\frac{\partial z}{\partial y}\right) \hat{j}$ can be written in vector form as

$$\nabla_{s}F = \nabla_{z}F + \frac{\partial F}{\partial z}\nabla_{s}z$$

We will use this equation to transform the horizontal derivatives in the momentum equation from z-coordinates to p-coordinates.