

Atmospheric Planetary Boundary Layer

$$
u+i v=\left(u_{g}+i v_{g}\right)\left(1-\mathrm{e}^{-\gamma z} \mathrm{e}^{-i \gamma z}\right)
$$

Dividing into the real and imaginary parts

> Euler's formula

$$
u+i v=\left(u_{g}+i v_{g}\right)\left[1-\mathrm{e}^{-\gamma z}(\cos \gamma z-i \sin \gamma z)\right]
$$

$$
u+i v=\left(u_{g}+i v_{g}\right)\left[1-\mathrm{e}^{-\gamma z} \cos \gamma z+i \mathrm{e}^{-\gamma z} \sin \gamma z\right]
$$

For simplicity, we will now assume that the geostrophic wind is zonal (west-east) so the $v_{g}=0$

$$
\begin{gathered}
u+i v=u_{g}\left[1-\mathrm{e}^{-\gamma z} \cos \gamma z+i \mathrm{e}^{-\gamma z} \sin \gamma z\right] \\
u=u_{g}\left(1-\mathrm{e}^{-\gamma z} \cos \gamma z\right) \quad \gamma^{2}=\frac{f}{2 K} \\
v=u_{g}\left(\mathrm{e}^{-\gamma z} \sin \gamma z\right)
\end{gathered}
$$

These equations describe the Ekman Spiral

Let's look at an example and they we will try to determine what these equations are telling us about the wind in the boundary layer.

$$
u=u_{g}\left(1-\mathrm{e}^{-\gamma z} \cos \gamma z\right) \quad v=u_{g}\left(\mathrm{e}^{-\gamma z} \sin \gamma z\right)
$$

When
$z=\pi / \gamma$, the wind is parallel to and nearly equal to the geostrophic value.
Hodograph of wind components in the Ekman spiral solution.
Arrows show velocity vectors for several levels in the Ekman layer, whereas the spiral curve traces out the velocity variation as a function of height.
Points labeled on the spiral show the values of γz, which is a nondimensional measure of height.

Effective depth of the boundary layer

We assume the values $f=10^{-4} s^{-1}$ and $K \cong 10 \mathrm{~m}^{2} \mathrm{~s}^{-1}$

The effective height

$$
z_{0}=\pi / \gamma
$$

$$
z_{0}=\frac{\pi}{\gamma}=\pi \sqrt{\frac{2 K}{f}}=\pi \sqrt{\frac{2 \times 10}{10^{-4}}} \approx 1400 \mathrm{~m}
$$

Thus, the effective depth of the Ekman boundary layer is about 1.4 km .

Mean wind hodograph for Jacksonville, Florida ($\sim=30^{\circ} \mathrm{N}$), April 4, 1968 (solid line) compared with the Ekman spiral (dashed line) and the modified Ekman spiral (dash-dot line) computed with De~=1200 m. Heights are shown in meters. (Adapted from Brown, 1970).

Ekman Motion

Ekman layer velocities (Northern Hemisphere). Water velocity as a function of depth (upper projection) and Ekman spiral (lower projection).

The large open arrow shows the direction of the total Ekman transport, which is perpendicular to the wind.

Ekman Spiral

The Ekman spiral occurs as a consequence of the Coriolis effect

How does the atmosphere move?

Free atmosphere

Planetary boundary layer

Implication of Ekman theory for synoptic scale systems

Wind Hodograph
A wind hodograph displays the change of wind speed and direction with height (vertical wind shear) in a simple polar diagram.

Wind speed and direction are plotted as arrows (vectors) with their tails at the origin and the point in the direction toward which the wind is blowing.

This is backward from our station model.

The length of the arrows is proportional to the wind speed. The larger the wind speed, the longer the arrow.

Normally only a dot is placed at the head of the arrow and the arrow itself is not drawn. The hodograph is completed by connecting the dots!

Hodograph - Example

Height (MSL)
250 m (SFC)
$500 \mathrm{~m} \quad 180 \quad 20$

1000 m	200	25
1500 m	260	50

Speed (kt)

10
20

Just by looking at this table, it is hard (without much experience) to see what the winds are doing and what the wind shear is.
$2000 \mathrm{~m} \quad 280$
75
Let us plot the winds using a station model diagram.

Let us now draw the hodograph!

Let us draw the surface observation. 160° at 10 kts
Let us draw the 500 m observation: 180° at 20 kts

We now place dots at the end of the arrows then erase the arrows.

We then connect the dots with a smooth curve and label the points.
This is the final hodograph

We see that the wind speeds increase with height.

We know this since the plotted points get farther from the origin as we go up.

We see that the winds change direction with heigh 90° it is curved clockwise.

If we start at the surface (SFC) and follow the hodograph curve, we go in a clockwise direction!

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=-\vec{V} \cdot \nabla u-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v-e w+F_{x} \\
& \frac{\partial v}{\partial t}=-\vec{V} \cdot \nabla v-\frac{1}{\rho} \frac{\partial p}{\partial y}-f u+F_{y} \\
& \frac{\partial w}{\partial t}=-\vec{V} \cdot \nabla w-\frac{1}{\rho} \frac{\partial p}{\partial z}+e u-g+F_{z} \quad \rightarrow-\frac{1}{\rho} \frac{\partial p}{\partial z}=g \\
& \frac{\partial p}{\partial t}=-\vec{V} \cdot \nabla p-\gamma p \nabla \cdot \vec{V}+\frac{R}{c_{v}} \rho \frac{d H}{d t} \\
& \frac{\partial \rho}{\partial t}=-\vec{V} \cdot \nabla \rho-\rho \nabla \cdot \vec{V} \\
& \frac{\partial q_{v}}{\partial t}=-\vec{V} \cdot \nabla q_{v}+Q_{v} \\
& p=\rho R T
\end{aligned}
$$

