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Potential Temperature

For an ideal gas that is undergoing an adiabatic process (i.e., a reversible process in which no

heat is exchanged with the surroundings), the first law of thermodynamics can be written in

differential form as
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Taking the logarithm of equation and differentiating, we find that
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Thus, for reversible processes, changes in fractional potential temperature are indeed

proportional to entropy changes.

A parcel that conserves entropy following the motion must move along an isentropic (constant θ)

surface.
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Scale Analysis of the Thermodynamic Energy Equation
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the first law of thermodynamics can be written approximately for synoptic scaling as
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where we have used the facts that for

0/ 1   0/ /d dz d dz    0 0 0 0ln ln (1 / ) ln /tot       = +  +



0

0

ln1
( )

p

d
u v w

t x z c Ty

q  



    
+ + + =

   

11  o

p

q
C d

c

−In the troposphere, radiative heating is quite weak so that typically

1

0

( ) 4  oT U
u v C d

t x y L

   



−     
+ +  

  

The typical amplitude of horizontal potential temperature fluctuations in a midlatitude

synoptic system (above the boundary layer) is . Thus,4 oC

14  oC d−
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Thus, in the absence of strong diabatic heating, the rate of change in the perturbation

potential temperature is equal to the adiabatic heating or cooling due to vertical motion in the

statically stable basic state, and equation can be approximated as
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The above equation can be expressed to the same order of approximation in terms of temperature 

as



THE BOUSSINESQ APPROXIMATION
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the adiabatic thermodynamic energy equation has a form similar to
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except, from the full material derivative, we see that the vertical advection of perturbation

potential temperature is formally included. Finally, the continuity equation under the

Boussinesq approximation is



Elementary Application of the Basic Equation

(پایه)کاربردهای ابتدایی معادلات اساسی 

In addition to the geostrophic wind, which was discussed in previous chapter there are

other approximate expression for the relationships among the velocity, pressure, and

temperature fields, which are useful in the analysis of weather systems.

These are most conveniently discussed using a coordinate system in which pressure is the

vertical coordinate.
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The basic Equations in Isobaric Coordinates
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The approximate horizontal momentum equation may be written in vectorial form as
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In order to express this equation in isobaric coordinate form the pressure gradiant force

using previous equations to obtain:
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Since p is the independent vertical coordinate we must expand the total derivative as

follows:
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From momentum equation we see that the isobaric coordinate form of the geostrophic

relationship is:
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The Continuity Equation
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Isobaric form by considering a Lagrangian control volume

Applying the hydrostatic equation zgp  −=
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The continuity equation in 

the isobaric system
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The Thermodynamic Energy Equation
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