

Hydrostatic balance

$$
\begin{aligned}
& \frac{d p}{d z}=-g \rho . \quad \text { equation for hydrostatic balance } \\
& p=R_{a} T \rho \rightarrow \rho
\end{aligned}
$$

We can derive some basic properties of the atmosphere, given that it is an ideal gas and assuming that it is in hydrostatic balance.

$$
\frac{d p}{d z}=-\frac{g p}{R_{\mathrm{a}} T}
$$

If the temperature is a known function of height, $T(z)$, we can in principle find the pressure and density as functions of height

$$
\begin{gathered}
\frac{d}{d z}(\ln p)=-\frac{g}{R_{\mathrm{a}} T} \\
\ln p-\ln p_{0}=-\frac{g}{R_{\mathrm{a}}} \int_{0}^{z} \frac{d z^{\prime}}{T\left(z^{\prime}\right)} \\
p=p_{0} \exp \left(-\frac{g}{R_{\mathrm{a}}} \int_{0}^{z} \frac{d z^{\prime}}{T\left(z^{\prime}\right)}\right)
\end{gathered}
$$

The simplest case is that of an isothermal temperature profile, i.e. $T=T_{0}=$ constant, when the pressure decays exponentially with height:

$$
p=p_{0} \exp \left(-\frac{g z}{R_{\mathrm{a}} T_{0}}\right)=p_{0} e^{-z / H},
$$

$$
H=R_{\mathrm{a}} T_{0} / g \quad \text { the pressure scale height }
$$

The height over which the pressure falls by a factor of 1 / $e=0.368$

In this isothermal case the density also falls exponentially with height in the same way:

$$
\rho=\rho_{0} \exp (-z / H)
$$

P_{0} being the density at the ground.
For an isothermal atmosphere with $T_{0}=260 \mathrm{~K}, \mathrm{H}$ is about 7.6 km

For Earth, $9=9.81$ meters $/ \mathrm{sec} 2, \mathrm{~T}=290 \mathrm{~K}$.
The atmosphere consists of $22 \% \mathrm{O} 2\left(m=2 \times 2.67 \times 10^{-26} \mathrm{~kg}\right)$ and $78 \% \mathrm{~N} 2\left(m=2 \times 2.3 \times 10^{-26} \mathrm{~kg}\right)$. What is the scale height, H ?

At what altitude on Earth would the density of the atmosphere $P(z)$ be only 10% what it is at sea level, PO?

Calculate the total mass of the atmosphere in a column of air, below a height h with integral calculus. At what altitude, h, on Earth is half the atmosphere below you?

The lapse rate denotes the rate of decrease of temperature with height:

$$
\Gamma(z)=-\frac{d T}{d z}
$$

in general the temperature decreases with height $(\Gamma>0)$ in the troposphere and increases with height $(\Gamma<0)$ in the stratosphere;

A layer in which the temperature increases with height $(\Gamma<0)$ is called an inversion layer.

If Γ is constant in the region between the ground and some height z_{1}, say, then the temperature in that region decreases linearly with height and the integral in

$$
p=p_{0} \exp \left(-\frac{g z}{R_{\mathrm{a}} T_{0}}\right)=p_{0} e^{-z / H},
$$

Another useful deduction from the hydrostatic equation in the form

$$
\frac{d p}{d z}=-\frac{g p}{R_{\mathrm{a}} T}
$$

is the 'thickness', or depth, of the layer between two given surfaces of constant pressure.

Suppose that the height of the pressure surface $p=p_{1}$ is z_{1}
and the height of the pressure surface $p=p_{2}$ is z_{2}
Then, if $p_{1}>p_{2}$, we must have $z_{1}<z_{2}$
since pressure decreases with height when hydrostatic balance applies

$$
\text { From } \quad \frac{d p}{d z}=-\frac{g p}{R_{\mathrm{a}} T} . \quad g d z=-R_{\mathrm{a}} T d(\ln p) ; \quad \text { integration gives }
$$

$$
z_{2}-z_{1}=-\frac{R_{\mathrm{a}}}{g} \int_{p_{1}}^{p_{2}} T d(\ln p)
$$

The integral can in principle be evaluated if the temperature T is known as a function of pressure p : this may be provided for example by a weather balloon or a satellite-borne instrument.

In particular, if T is constant,

$$
z_{2}-z_{1}=\frac{R_{\mathrm{a}} T}{g} \ln \left(\frac{p_{1}}{p_{2}}\right)
$$

If T is not constant, we can still write

$$
z_{2}-z_{1}=\frac{R_{\mathrm{a}} \bar{T}}{g} \ln \left(\frac{p_{1}}{p_{2}}\right)
$$

provided that we define T as a suitably weighted mean temperature within the layer:

$$
\bar{T}=\frac{\int_{p_{2}}^{p_{1}} T d(\ln p)}{\int_{p_{2}}^{p_{1}} d(\ln p)}
$$

Thus the thickness of the layer between two pressure surfaces is proportional to the mean temperature of that layer.

Entropy and potential temperature

The First Law of Thermodynamics, applied to a small change to a closed system, such as a mass of air contained in a cylinder with a movable piston at one end can be written

$$
\delta U=\delta Q+\delta W \quad \delta U=T \delta S-p \delta V
$$

where S is the entropy of the system

An alternative form

$$
\delta H=T \delta S+V \delta p
$$

$$
\mathrm{H}=\mathrm{U}+\mathrm{pV} \quad \text { the enthalpy }
$$

These equations apply both for reversible and for irreversible changes. However, we shall mostly restrict our attention to reversible changes, for which the equations

$$
\delta Q=T \delta S, \quad \delta W=-p \delta V
$$

For unit mass of ideal gas, for which $V=1 / \rho$, it can be shown that

$$
U=c_{v} T
$$

where c_{v} is the specific heat capacity at constant volume and is independent of T.
Therefore the ideal gas law, equation

$$
p=R_{a} T \rho
$$ implies that, for unit mass of air

$$
H=c_{v} T+R_{\mathrm{a}} T=c_{p} T \quad c_{p}=c_{v}+R_{\mathrm{a}}
$$

the specific heat capacity of air at constant pressure

On substituting the expression

and $V=1 / \rho=R_{a} T / p$ into equation

$$
\delta H=T \delta S+V \delta p,
$$

we get

$$
T \delta S=c_{p} \delta T-\frac{R_{\mathrm{a}} T}{p} \delta p
$$

Division by T gives

$$
\delta S=c_{p} \frac{\delta T}{T}-R_{\mathrm{a}} \frac{\delta p}{p}=c_{p} \delta(\ln T)-R_{\mathrm{a}} \delta(\ln p)
$$

and integration gives the entropy per unit mass

$$
S=c_{p} \ln T-R_{\mathrm{a}} \ln p+\text { constant }=c_{p} \ln \left(T p^{-\kappa}\right)+S_{0}
$$

which is approximately $2 / 7$ for a diatomic gas, and S_{0} is a constan

An adiathermal process is one in which heat is neither gained nor lost, so that $\delta Q=0$

An adiabatic process is one that is both adiathermal and reversible;
from equation

$$
\delta Q=T \delta S,
$$

$$
\delta S=0
$$

Imagine a cylinder of air, originally at temperature T and pressure p, that is compressed adiabatically until its pressure equals p_{0}.

We can find its resulting temperature, θ say, using equation

$$
\delta S=c_{p} \delta(\ln T)-R_{\mathrm{a}} \delta(\ln p)
$$

> with the fact that $\delta S=0$,
> For an adiabatic process, so that
$c_{p} \delta(\ln T)=R_{\mathrm{a}} \delta(\ln p)$

Integrating and using the end conditions $T=\theta$ and $p=p_{0}$ then gives

$$
c_{p} \ln \left(\frac{\theta}{T}\right)=R_{\mathrm{a}} \ln \left(\frac{p_{0}}{p}\right)
$$

$$
\theta=T\left(\frac{p_{0}}{p}\right)^{\kappa}
$$

$$
\kappa=R_{\mathrm{a}} / c_{p},
$$

The quantity θ is called the potential temperature of a mass of air at temperature T and pressure p.
The value of p_{0} is usually taken to be 1000 hPa .
Using equation

$$
S=c_{p} \ln \left(T p^{-\kappa}\right)+S_{0}
$$

it follows that the potential temperature is related to the specific entropy S by

$$
S=c_{p} \ln \theta+S_{1}, \quad \text { where } S_{1} \text { is another constant }
$$

By definition, the potential temperature of a mass of air is constant when the mass is subject to an adiabatic change;
conversely, the potential temperature will change when the mass is subject to a non-adiabatic (or diabatic) change.

As we shall see, the potential temperature is often a very useful concept in atmospheric thermodynamics and dynamics.

Parcel cancepts

For an adiabatically rising parcel, the potential temperature and entropy are constant as its height changes, so we can write

$$
\left(\frac{d \theta}{d z}\right)_{\text {parcel }}=0, \quad\left(\frac{d S}{d z}\right)_{\text {parcel }}=0
$$

From equation

$$
\delta S=c_{p} \frac{\delta T}{T}-R_{\mathrm{a}} \frac{\delta p}{p}=c_{p} \delta(\ln T)-R_{\mathrm{a}} \delta(\ln p),
$$

we therefore have the following relation between the vertical derivatives of temperature and pressure, following the parcel:

$$
0=\frac{c_{p}}{T}\left(\frac{d T}{d z}\right)_{\text {parcel }}-\frac{R_{\mathrm{a}}}{p}\left(\frac{d p}{d z}\right)_{\text {parcel }}
$$

$$
0=\frac{c_{p}}{T}\left(\frac{d T}{d z}\right)_{\text {parcel }}-\frac{R_{\mathrm{a}}}{p}\left(\frac{d p}{d z}\right)_{\text {parcel }}
$$

$$
-\left(\frac{d T}{d z}\right)_{\text {parcel }}=-\frac{R_{\mathrm{a}} T}{c_{p} p}\left(\frac{d p}{d z}\right)_{\mathrm{parcel}}
$$

$$
\begin{gathered}
\frac{d p}{d z}=-\rho g \quad p V_{m}=R T \\
-\left(\frac{d T}{d z}\right)_{\text {parcel }}=\frac{g}{c_{p}} \equiv \Gamma_{\mathrm{a}}
\end{gathered}
$$

The quantity Γ_{a} is the rate of decrease of temperature with height, following the adiabatic parcel as it rises.

It is called the adiabatic lapse rate;

